
Personalized Federated Learning under Local Supervision

Supplementary Material

7. Appendix-Experiments
7.1. Datasets
In this work, we perform experiments on three datasets, i.e.,
CIFAR10, CIFAR100 and IMAGENET. CIFAR10 and CI-
FAR100 are among the most classic image classification
tasks, both containing 60, 000 images, evenly distributed
across 10 and 100 categories, respectively. FEMNIST is
a dataset with 62 different character categories (including
numbers and uppercase and lowercase English letters), with
a total of 805,263 samples. IMAGENET is a significantly
more complex image classification dataset compared to CI-
FAR10/100, featuring a larger number of images, higher
resolution, and a greater variety of categories. We used the
ILSVRC2012 training set (138 GB, 1,331,167 images), as-
signing approximately 13,000 images per client under the
Dirichlet(100, 0.1) split. Images were resized to 64×64 us-
ing a single-crop method, matching Tiny ImageNet. Since
this differs from the sizes in CIFAR and FEMNIST, we ad-
justed the linear layers in LeNet-5 to fit the new convolu-
tional output, while keeping the convolutional layer param-
eters unchanged.

7.2. Data partitioning
Our data partitioning only considers the label differences
between clients.

Pathological Non-IID partition. In pathological distri-
bution, we first need to determine the number of categories
c to be distributed to each client. We will partition the data
based on the total amount of data, the number of categories,
the number of clients, ensuring that each piece of data does
not appear more than once and that all data is utilized. We
present our partitioning on CIFAR10, as shown in Figure
5a.

(a) Pathological Non-IID partition (b) Dirichlet Non-IID partition

Figure 5. Partitioning on CIFAR10

Dirichlet Non-IID partition. In the Dirichlet distribu-
tion, the distribution for each client is independent. As-
sume that the distribution for client is governed by a vector
q (qi > 0, i ∈ [1,M ], ∥q∥1 = 1) of length M , where M
represents the number of classes. The vector q is sampled

from a Dirichlet distribution

q ∼ Dir(αp) (19)

Dir p (pi > 0, i ∈ [1,M ], ∥p∥1 = 1) represents the prior
class distribution that we manually set. Here, we define
them as pi = 1

M , i ∈ [1,M ]. The parameter α is a concen-
tration parameter, which can be simply understood as deter-
mining the probability that a sample belongs to the prior p.
When each element in p is the same, the probability density
function of the Dirichlet distribution is given by:

Dir (q | αp) = 1

B (αp)

∏M
i=1q

αpi−1
i , (20)

B (αp) =

∏M
i=1 Γ (αpi)

Γ
(∑M

i=1αpi

) . (21)

And E (qi) = pi. We can see from Eq. (20) that when
αpi is large, our samples are nearly qi = 1

M , i ∈ [1,M ],
whereas when αpi is small, only one category appears in
the samples. Therefore, we can set the size of αp to control
the degree of Non-IID data. Since each element in p is the
same and we are only concerned with the size of αp, we
can set just one variable α to automatically normalize p and
control the generation of the desired data.

However, this partitioning method still presents some is-
sues. First, different clients may have overlapping data, or
certain data in the dataset may not be utilized. Second, the
number of samples for each client is predetermined and the
same across all clients, which is almost impossible in real-
world scenarios because clients vary in their ability to col-
lect data. Therefore, we apply the Dirichlet distribution to
the data for each class, where q and p become vectors of size
n, where n is the number of clients. During the partition-
ing process, we need to ensure that a larger portion of the
data is allocated to clients with fewer overall data points to
maintain a Non-IID distribution. However, a problem arises
when there are too many clients: insufficient data may re-
sult in some clients having too little data after all categories
have been split. In this case, we can repartition the data
until the client with the least amount of data reaches the re-
quired threshold. We present our partitioning on CIFAR10,
as shown in Fig. 5b.

7.3. Baselines and training details
Details of Baselines. These methods are selected for their
relevance to our approach (see Related Work) or their strong
performance.In FedProx [26], a proximal term is used to
improve stability. Per-FedAvg [14] proposes using the



CIFAR10 CIFAR100

No. of Clients (Dir) 100 (0.1) 50 (0.1) 100 (0.5) 50 (0.5) 100 (0.1) 50 (0.1) 100 (0.5) 50 (0.5)

FedSimSup .892(12) .882(21) .725(207) .736(174) .503(107) .546(92) .331(327) .385(245)
FedSimSup* 87 96 342 253 276 245 572 473
FedSimSup** .874 .843 .712 .720 .473 .496 .307 .327

Table 5. * denotes “without similarity information” and ** denotes “using the serial architecture”. Values in () for FedSimSup and in the *
column indicate the number of epochs to reach 0.60 and 0.20 acc, showing that similarity-based aggregation accelerates convergence. All
other values are final accuracy.

MAML framework to obtain an initial model that quickly
adapts to clients. FedRep [10] sets up a unique head for
each client to enhance personalization capability. FedProto
[45] aggregates the local prototypes to avoid gradient mis-
alignment. FedPac [48] performs explicit local-global fea-
ture alignment by leveraging global semantic knowledge.
pFedFda [32] employs a generative classifier for global rep-
resentation learning while adapting the classifier to the lo-
cal client distributions. FedAs [50] leverages the alignment
of client-side parameters and the synchronization of server-
side clients to overcome the challenge of intra-client and
inter-client inconsistency in pFL methods, respectively.

Settings for Baselines. In the FedAvg method, we set
the client participation rate to 0.1, the global communica-
tion rounds to 1000, and the local epochs to 5. For other
methods, unless otherwise specified, the parameters remain
the same. In the FedProx method, we set the coefficient of
the proximal term µ to 1 to improve stability. In the Fed-
Pac method, we set the hyper-parameter to balance super-
vised loss and regularization loss λ to 1. In the Per-FedAvg
method, we set steps of stochastic gradient descent locally τ
to 4 and stepsize α to 0.001, and use Per-FedAvg (HF). Dur-
ing testing, each client performs fine-tuning for 3 epochs.
In the FedRep method, we set the classification head as
the personalized layer, training the classification head for
2 epochs and the representation layer for 3 epochs. In the
FedProto method, we set the importance weight λ to 1. For
local training, we randomly select clients at a proportional
rate in each round and conduct training, but do not perform
aggregation. This means that the client’s model will only
change after the client participates in communication.

Training Details. We set the global communication
rounds T to 1,000 and the local training epochs to 5, with
τθ = 2 epochs dedicated to training the inter-learning model
and τs = 2 epochs for training the supervisor. Parameters C
and γ in (7) are set to 40 and 3/7, respectively. For CIFAR10
and CIFAR100, we set the number of clients n to 50 and 100
with a participation rate r of 0.1 per round. For FEMNIST
we maintain its original setup with a total of 3,597 clients
to ensure that our method remains effective under a large
number of clients and the participation rate r is set to 0.1
for local training and 0.01 for the nine methods besides lo-
cal training. We set the batch size for SGD to 32 and the

learning rate to 0.1.

7.4. Ablation Experiments

We conduct ablation experiments under all Dirichlet config-
urations on CIFAR-10 and CIFAR-100. Tab. 5 presents the
results.The results confirm the effectiveness of our design.
Using similarity-based aggregation leads to faster conver-
gence compared to naive averaging, and the proposed par-
allel architecture outperforms the serial alternative.

7.5. Supervisor Assistance

Figure 6. CAM of the inter-learning model (middle) and the su-
pervisor (right).

We verify the assistance effect of the supervisor using
Class Activation Map (CAM) [39] in image classification
tasks. As shown in Fig. 6, the image on the left is the orig-
inal classification task image, the middle one is the CAM
of the inter-learning model, and the one on the right is the
CAM of the supervisor. It can be observed that, when
trying to recognize the image as a cat, the inter-learning
model, possibly influenced by information learned from
other clients, tends to focus on scattered details, such as
the cat’s eyes or nose. In contrast, the supervisor focuses
on the entire body of the cat, helping to prevent the inter-
learning model’s attention from deviating too much. Thus,
we conclude that the supervisor and inter-learning model in
our FedSimSup have different focuses, enhancing the ex-
plainability of the model’s behavior. To further demonstrate
the auxiliary role of the supervisor, we evaluated the super-
visor’s impact in a new inter-learning model by testing non-
participating clients after each round. The results show that
clients with supervisors performed better and more stably,
while those without supervisors exhibited greater fluctua-
tions.



8. Convergence Analysis: Full Proofs

We give the full convergence proofs here. The outline of
this section is:
• Sec. 8.1: Review of assumptions and main theorem;
• Sec. 8.2: The full proof of Theorem 1;
• Sec. 8.3: Claims used in the analysis.

8.1. Assumptions and Main theorem

For integrity, we rewrite the assumptions from the main pa-
per as follows. Note that these assumptions are standard
and widely used in convergence analysis in federated learn-
ing [14, 16, 26, 27, 35].

Assumption 1 (Bounded Loss). There exists constant F ∗ ∈
R such that for any client i ∈ {1, . . . , n}, fi is bounded
from below by F ∗, fi(s, θ) > F ∗,∀s, θ.

Assumption 2 (Smoothness). There exists L > 0 such
that for any client i ∈ {1, . . . , n}, ∇sfi(·, θ), ∇sfi(s, ·),
∇θfi(·, θ) and ∇θfi(s, ·) are L-Lipschitz.

Assumption 3 (Bounded Gradient). For all i ∈ {1, . . . , n},
the gradient of loss function fi is bounded. There exists
G > 0 such that

∥∇sfi(s, θ)∥ ≤ G, ∥∇θfi(s, θ)∥ ≤ G, ∀s, θ. (22)

Assumption 4 (Unbiasedness). SGD estimator is unbiased.
There exists σ > 0 such that for any client i ∈ {1, . . . , n},

E[SGD(fi(s, θ), s)] = ∇sfi(s, θ), ∀s, θ,
E[SGD(fi(s, θ), θ)] = ∇θfi(s, θ), ∀s, θ.

(23)

Assumption 5 (Bounded Variance). The variance of SGD
estimator is bounded. That is, for any client i ∈ {1, . . . , n},

E
[
∥SGD(fi(s, θ), s)−∇sfi(s, θ)∥2

]
≤ σ2,∀s, θ. (24)

E
[
∥SGD(fi(s, θ), θ)−∇θfi(s, θ)∥2

]
≤ σ2,∀s, θ. (25)

8.2. Convergence analysis in FedSimSup

With the above assumptions in Sec. 8.1, we restate the con-
vergence of the proposed FedSimSup as follows.

Theorem 1 (Convergence of FedSimSup). Suppose As-
sumptions 1 to 5 hold, and the learning rates in FedSimSup
are chosen as

ηts = η/
√
TLτs, ηtθ = η/

√
TLτθ (26)

with η < 1, then we have the following bound.

1

T

T−1∑
i=0

[∥∥∥∇sfi(s
t,0
i , θt,0i )

∥∥∥2 + 2
∥∥∥∇θfi(s

t,0
i , θt,0i )

∥∥∥2]
≤ L

2T 1/2rη
(fi(s

0,0
i , θ0,0i )− F ∗) +

3η2G2

2T
+

ησ2

T 1/2τ̄

+
(1− r)λiG

2

2r

(
− C2(1− 2γ)T 2γ−1 lnT

+ C2(1 + 2 lnC)T 2γ−1

+ 3CT γ−1 + 1/T − C2T 2γ−2

)
+

(1− r)λ2
i η

2G2

2rL

(
3CT 3γ−3/2 + 9C2T 2γ−3/2

+ 3CT γ−3/2 − 3C4T 4γ−9/2

)
.

(27)
Here, τ̄ = 2/(1/τs + 1/τθ) and λi =
max|N |⊂{1,...,n}(

∑
j∈N mj)/(

∑
j∈N mj +Kmi).

Proof. In the communication round t, the probability of
each client i being sampled is r. Therefore, function value
fi(s

t,τs
i , θt,τθi ) can be computed as follows,

Et

[
fi(s

t,τs
i , θt,τθi )

]
= Et

[
fi(s

t,τs
i , θt,τθi ) | i ∈ N (t)

]
Pr[i ∈ N (t)]

+ Et

[
fi(s

t,τs
i , θt,τθi ) | i /∈ N (t)

]
Pr[i /∈ N (t)]

= rEt

[
fi(s

t,τs
i , θt,τθi ) | i ∈ N (t)

]
+ (1− r)Et

[
fi(s

t,τs
i , θt,τθi ) | i /∈ N (t)

]
,

(28)

where Et = E
[
· | st,0i , θt,0i

]
.

We plug Claims 1 and 2 into Eq. (28), then we can upper
bound Et

[
fi(s

t,τs
i , θt,τθi )

]
as follows.

Et

[
fi(s

t,τs
i , θt,τθi )

]
≤ fi(s

t,0
i , θt,0i ) + r · 3η

3G2

T 3/2L
+ r · η

2σ2

TLτ̄

− r · η√
TL

∥∥∥∇sfi(s
t,0
i , θt,0i )

∥∥∥2
− r · 2η√

TL

∥∥∥∇θfi(s
t,0
i , θt,0i )

∥∥∥2
+ (1− r) · λiβ

t(2t+ 1)ηG2

T 1/2L

+ (1− r) · (λiβ
t)2(2t+ 1)2η2G2

TL2

(29)

Note that st+1,0
i = st,τsi , θt+1,0

i = θt,τθi . Therefore, sum



across t = 0, . . . , T − 1, we have

E
[
fi(s

T,0
i , θT,0

i )
]

≤ fi(s
0,0
i , θ0,0i ) +

3η3G2

T 1/2L
+

η2σ2

Lτ̄

− rη√
TL

T−1∑
i=0

∥∥∥∇sfi(s
t,0
i , θt,0i )

∥∥∥2
− 2rη√

TL

T−1∑
i=0

∥∥∥∇θfi(s
t,0
i , θt,0i )

∥∥∥2
+

(1− r)λiηG
2

T 1/2L

T−1∑
i=0

βt(2t+ 1)

+
(1− r)λ2

i η
2G2

TL2

T−1∑
i=0

(βt)2(2t+ 1)2

(30)

The inequality can be re-written as follows.

1

T

T−1∑
i=0

[∥∥∥∇sfi(s
t,0
i , θt,0i )

∥∥∥2 + 2
∥∥∥∇θfi(s

t,0
i , θt,0i )

∥∥∥2]
≤ L

2T 1/2rη
(fi(s

0,0
i , θ0,0i )− F ∗) +

3η2G2

2T
+

ησ2

T 1/2τ̄

+
(1− r)λiG

2

2Tr

T−1∑
i=0

βt(2t+ 1)

+
(1− r)λ2

i η
2G2

2T 3/2rL

T−1∑
i=0

(βt)2(2t+ 1)2

(31)
Invoking Claims 4 and 5, we can obtain the final result.

8.3. Proof for Claims
The analysis for each communication round is given in the
following claims.

Claim 1 (Sufficient Decrease for Sampled Clients). Con-
sider the setting of Theorem 1, we have the following in-
equality for all sampled client i ∈ N (t).

Et

[
fi(s

t,τs
i , θt,τθi )

]
≤ fi(s

t,0
i , θt,0i ) +

3η3G2

T 3/2L
+

η2σ2

TLτ̄

− 2η√
TL

∥∥∥∇θfi(s
t,0
i , θt,0i )

∥∥∥2
− η√

TL

∥∥∥∇sfi(s
t,0
i , θt,0i )

∥∥∥2,
(32)

where Et = E[· | N (t)] denotes the expectation condi-
tioned on client sampling N (t) with respect to SGD steps,
and τ̄ = 2/(1/τs + 1/τθ) is the harmonic mean.

Proof. In communication round t, for the τ+1-th (0 ≤ τ ≤
τs− 1) SGD step on parameter s of each sampled client i ∈
N (t), we use Assumption 2 to upper bound fi(s

t,τ+1
i , θt,0i )

as follows.

fi(s
t,τ+1
i , θt,0i ) ≤ fi(s

t,τ
i , θt,0i )

+
〈
∇sfi(s

t,τ
i , θt,0i ), st,τ+1

i − st,τi

〉
︸ ︷︷ ︸

T1

+
L

2

∥∥∥st,τ+1
i − st,τi

∥∥∥2︸ ︷︷ ︸
T2

,

(33)
where st,τ+1

i and st,τi is the parameter of supervisor after
τ + 1-th and τ -th SGD step, respectively.

We first calculate the expectation of term T1

Et,τ
s [T1] = Et,τ

s

〈
∇sfi(s

t,τ
i , θt,0i ),−ηsSGD(fi(s

t,τ
i , θt,0i ))

〉
= − ηs

〈
∇sfi(s

t,τ
i , θt,0i ),Et,τ

s

[
SGD(fi(s

t,τ
i , θt,0i ))

]〉
= − ηs

∥∥∥∇sfi(s
t,τ
i , θt,0i )

∥∥∥2.
(34)

Here, Et,τ
s = E

[
· | st,τi , θt,0i

]
means that the expectation is

conditioned on st,τi and θt,0i .
Then we bound the expectation term T2,

Et,τ
s [T2] = η2sEt,τ

s

∥∥∥SGD(fi(s
t,τ
i , θt,0i ))

∥∥∥2
= η2sEt,τ

s

∥∥∥SGD(fi(s
t,τ
i , θt,0i ))−∇sfi(s

t,τ
i , θt,0i )

∥∥∥2
+ η2s

∥∥∥∇sfi(s
t,τ
i , θt,0i )

∥∥∥2
≤ η2sσ

2 + η2s

∥∥∥∇sfi(s
t,τ
i , θt,0i )

∥∥∥2.
(35)

Note that
∥∥∥∇sfi(s

t,τ
i , θt,0i )

∥∥∥2 can be lower bound by∥∥∥∇sfi(s
t,0
i , θt,0i )

∥∥∥2 as follows.∥∥∥∇sfi(s
t,0
i , θt,0i )

∥∥∥2 = ∥∇sfi(s
t,0
i , θt,0i )−∇sfi(s

t,τ
i , θt,0i )

+∇sfi(s
t,τ
i , θt,0i )∥

≤ 1

2

∥∥∥∇sfi(s
t,0
i , θt,0i )−∇sfi(s

t,τ
i , θt,0i )

∥∥∥2
+

1

2

∥∥∥∇sfi(s
t,τ
i , θt,0i )

∥∥∥2
≤ 1

2
(LτsηsG)2 +

1

2

∥∥∥∇sfi(s
t,τ
i , θt,0i )

∥∥∥2.
(36)

That is∥∥∥∇sfi(s
t,τ
i , θt,0i )

∥∥∥2 ≥ 2
∥∥∥∇sfi(s

t,0
i , θt,0i )

∥∥∥2 − L2τs
2η2sG

2.

(37)



Combine the Eqs. (33) to (35) and (37), we have

Et,τ
s

[
fi(s

t,τ+1
i , θt,0i )

]
≤ fi(s

t,τ
i , θt,0i ) +

L

2
η2sσ

2

− (ηs − Lη2s/2)
∥∥∥∇sfi(s

t,τ
i , θt,0i )

∥∥∥2
≤ fi(s

t,τ
i , θt,0i ) +

L

2
η2sσ

2

− 2(ηs − Lη2s/2)
∥∥∥∇sfi(s

t,0
i , θt,0i )

∥∥∥2
+ (ηs − Lη2s/2)L

2τs
2η2sG

2.
(38)

Note that when learning rate is ηts = η/
√
TLτs and τ ≤

1,
η

2
√
TLτs

≤ (ηs − Lη2s/2) = ηs(1− Lηs/2) ≤ ηs =
η√
TLτs

.

(39)

Then Et,τ
s

[
fi(s

t,τ+1
i , θt,0i )

]
can be further bounded as

follows.

Et,0
s

[
fi(s

t,τ+1
i , θt,0i )

]
≤ fi(s

t,τ
i , θt,0i ) +

η3G2

T 3/2Lτs
+

η2σ2

2TLτs2

− η

T 1/2Lτs

∥∥∥∇sfi(s
t,0
i , θt,0i )

∥∥∥2
(40)

We sum Eq. (40) over τ = 0, . . . , τs, we have

Et,0
s

[
fi(s

t,τs
i , θt,0i )

]
≤ fi(s

t,0
i , θt,0i ) +

η3G2

T 3/2L
+

η2σ2

2TLτs

− η√
TL

∥∥∥∇sfi(s
t,0
i , θt,0i )

∥∥∥2.
(41)

Similarly, for personalization parameter θ, we have

Et,0
θ

[
fi(s

t,τs
i , θt,τθi )

]
≤ fi(s

t,τs
i , θt,0i ) +

η3G2

T 3/2L
+

η2σ2

2TLτθ

− η√
TL

∥∥∥∇θfi(s
t,τs
i , θt,0i )

∥∥∥2.
(42)

where Et,τ
θ = E

[
· | st,τsi , θt,0i

]
denotes the expectation con-

ditioned on st,τsi and θt,0i .

Similarly we can bound
∥∥∥∇θfi(s

t,τs
i , θt,0i )

∥∥∥2 as follows.∥∥∥∇θfi(s
t,0
i , θt,0i )

∥∥∥2 = ∥∇θfi(s
t,0
i , θt,0i )−∇θfi(s
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We plug Eq. (43) into Eq. (42), we can obtain

Et,0
θ

[
fi(s

t,τs
i , θt,τθi )

]
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∥∥∥2.
(44)

Combining Eqs. (41) and (44), we complete the proof for
this claim.

Claim 2 (Upper Bound for Non-Sampled Clients). In each
communication round t, for any non-sampled client i /∈
N (t), the following inequality holds

fi(s
t+1
i , θt+1

i ) ≤ fi(s
t
i, θ

t
i) +

λiβ
t(2t+ 1)ηG2

T 1/2L

+
(λiβ

t)2(2t+ 1)2ηG2

TL2

(45)

Proof. In communication round t, for each non-sampled
client i /∈ N (t), we use Assumption 2 and have

fi(s
t+1
i , θt+1

i ) = fi(s
t, θt+1

i )

≤ fi(s
t
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t
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2
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∥∥2
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For notation simplicity, we rewrite ?? as follows.

θt+1
i = λiβ

tθti +
∑

j∈N (t)

wt
ijθ

t+1
j . (47)

We apply Claim 3 to upper bound
∥∥θt+1
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∥∥ as fol-

lows.
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ij(θ

t+1
j − θtj) +

∑
j∈N (t)

wt
ij(θ

t
j − θti)

∥∥∥∥∥∥
≤

∑
j∈N (t)

wt
ij

∥∥θt+1
j − θtj

∥∥+
∑

j∈N (t)

wt
ij

∥∥θtj − θti
∥∥

≤ λiβ
t · τθηθG+ λiβ

t · 2tτθηθG
= λiβ

t(2t+ 1)τθηθG.
(48)

We bound term T3 as follows.

T3 ≤
∥∥∇θfi(s

t, θti)
∥∥ · ∥∥θt+1

i − θti
∥∥

≤ G · λiβ
t(2t+ 1)τθηθG.

(49)

Combine the above results, we have

fi(s
t+1
i , θt+1

i ) ≤ fi(s
t
i, θ

t
i) + λiβ

t(2t+ 1)τθηθG
2

+ (λiβ
t)2(2t+ 1)2τθ

2η2θG
2.

(50)

Plugging ηθ = η/
√
TτθL into Eq. (50) completes the proof.



The analysis of client drift is given in the next result.

Claim 3 (Client Drift). Consider the setting of Theorem 1,
we have∥∥θti − θtj

∥∥ ≤ 2tτsηsG, ∀i, j ∈ {1, . . . , n}. (51)

Proof. We first prove the following inequality.∥∥θti − θ0
∥∥ ≤ tτsηsG, ∀i, j ∈ {1, . . . , n}, (52)

where θ0 is the initialization of inter-learning models qθ.
We prove Eq. (52) by induction. When t = 0, Eq. (52)

holds since all clients share the same initialization θ0.
Assume Eq. (52) holds for communication round t, we

show that it holds for communication round t+ 1.
For any sampled client i ∈ N (t), according to Assump-

tion 3, we have∥∥θt+1
i − θ0

∥∥ ≤ ∥∥θt+1
i − θti

∥∥+
∥∥θti − θ0

∥∥
≤ τsηsG+ tτsηsG = (t+ 1)τsηsG

(53)

For any non-sampled client i /∈ N (t), We rewrite ?? for
notation simplicity as follows.

θt+1
i = λiβ

tθti +
∑

j∈N (t)

wt
ijθ

t+1
j . (54)

Then we have

∥∥θt+1
i − θ0

∥∥ =

∥∥∥∥∥∥λiβ
t(θti − θ0) +

∑
j∈N (t)

wt
ij(θ

t+1
j − θ0)

∥∥∥∥∥∥
≤ λiβ

t
∥∥θti − θ0

∥∥+
∑

j∈N (t)

wt
ij

∥∥θt+1
j − θ0

∥∥
≤ λiβ

ttτsηsG+
∑

j∈N (t)

wt
ij(t+ 1)τsηsG

≤ (t+ 1)τsηsG.
(55)

This completes the proof for Eq. (52).
According to Eq. (52), we have∥∥θti − θtj

∥∥ ≤ ∥∥θti − θ0
∥∥+

∥∥θ0 − θtj
∥∥ ≤ 2tτsηsG, (56)

which completes the proof of this claim.

Note that when inter-learning models are initialized dif-
ferently, it only adds a constant to the RHS of Eq. (51),
which is an order smaller than 2tτsηsG and will not affect
the convergence.

Claim 4. Consider the setting of Theorem 1, we have the
following upper bound,

T−1∑
i=0

βt(2t+ 1) ≤ − C2(1− 2γ)T 2γ lnT (57)

+ C2(1 + 2 lnC)T 2γ (58)

+ 3CT γ + 1− C2T 2γ−1. (59)

Proof. Recall that

βt =

{
1, t < CT γ(
CTγ

t

)2
, t ≥ CT γ ,

(60)

Here, C ≥ 0, 0 < γ < 1/2.
Therefore, βt(2t + 1) is increasing in [0, CT γ) and de-

creasing in [CT γ , T ). Thus we have the following upper
bound.

T−1∑
i=0

βt(2t+ 1)

=

CTγ−1∑
i=0

βt(2t+ 1) + (1 + 2CT γ) +

T−1∑
i=CTγ+1

βt(2t+ 1)

≤
∫ CTγ

0

(2t+ 1) dt+ (1 + 2CT γ) +

∫ T

CTγ

C2T 2γ

t2
· (2t+ 1) dt

= (t2 + t) |CTγ

0 + (1 + 2CT γ) + C2T 2γ(−2 ln t− 1

t
) |TCTγ

= − C2(1− 2γ)T 2γ lnT + C2(1 + 2 lnC)T 2γ

+ 3CT γ + 1− C2T 2γ−1.
(61)

Claim 5. Consider the setting of Theorem 1, we have the
following upper bound.

T−1∑
i=0

(βt)2(2t+ 1)2 ≤ 3CT 3γ + 9C2T 2γ (62)

+ 3CT γ − 3C4T 4γ−3. (63)

Proof. Recall that

βt =

{
1, t < CT γ(
CTγ

t

)2
, t ≥ CT γ ,

(64)

Here, C ≥ 0, 0 < γ < 1/2.
Therefore, βt(2t + 1) is increasing in [0, CT γ) and de-

creasing in [CT γ , T ). Thus we have the following upper
bound.

T−1∑
i=0

(βt)2(2t+ 1)2 (65)

≤
T−1∑
i=0

(βt)2(3t)2 (66)

= 9

CTγ−1∑
i=0

(βt)2t2 + 9C2T 2γ + 9

T−1∑
i=CTγ+1

(βt)2t2 (67)

≤ 9

∫ CTγ

0

t2 dt+ 9C2T 2γ + 9

∫ T

CTγ

C4T 4γ

t4
· t2 dt (68)

= 3t3 |CTγ

0 + 9C2T 2γ − 3C4T 4γt−3 |TCTγ (69)

= 3CT 3γ + 9C2T 2γ + 3CT γ − 3C4T 4γ−3. (70)
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Figure 7. The accuracy of different method on CIFAR10
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Figure 8. The accuracy of different method on CIFAR100
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Figure 9. The performance of different parameters C and γ


