
Supplementary Material of “QuickSplat: Fast 3D Surface Reconstruction via
Learned Gaussian Initialization”

1. More Implementation Details
SuGaR. We follow the official code that optimizes vanilla
3DGS for 7,000 iterations and refine for 15,000 iterations
to get the best quality mesh. Depth-normal consistency
(dn consistency) is used as the regularization objective.

2DGS. We follow the official code and optimize the scene
for 30,000 iterations, using the same hyper-parameters such
as the learning rates and the number of iterations for pruning
and densification; we only optimize the RGB color of the
Gaussians instead of the spherical harmonics.

GS2Mesh. We follow the official code and optimize
vanilla 3DGS for 30,000 iterations. The pretrained stereo
estimation model from DLNR [6] that is trained on Middle-
bury is used to extract stereo depth, with 0.1m as the stereo
baseline. Since we work on scene-level datasets, the object
masks are ignored.

MonoSDF. We follow the official code and use MLP as
the scene representation. We use the Omnidata [3] to extract
the depth and normal of the training images, and both depth
and normal losses are used for the optimization. The model
is optimized for 1,000 epochs.

PGSR. (Chen et al. 2024) We uses the official code
and optimize the scenes for 30,000 iterations, with single
view and multi-view regularization loss after 7,000 itera-
tions. Exposure compensation is not used as ScanNet++
has fixed camera exposure.

QuickSplat. We provide the pseudo code of the optimiza-
tion process of QuickSplat in Algorithm 1.

2. Additional results
Generalization. To demonstrate the generalization ability
of our method, we run QuickSplat trained on ScanNet++
directly on other indoor datasets, such as ARKitScenes [2]
and Mip-NeRF 360 [1], without any additional fine-tuning.

Algorithm 1 The optimization process of QuickSplat

P: SfM points
fI : initializer network
fD: densifier network
fO: optimizer network

G0 ← fI(P)
for t = 0 to T − 1 do
∇Gt ← 0
for all images do

L← rendering loss of the image
∇Gt ← ∇Gt + δL

δGt

end for
Ĝt ← fD(Gt,∇Gt, t)
Ḡt ← Gt ∪ Ĝt ▷ Concatenate the new GS

∇Ḡt ← ∇Gt ∪ 0
∆Ḡt ← fO(Ḡt,∇Ḡt, t)
Gt+1 ← Ḡt +∆Ḡt ▷ Update the parameters

end for

We process the ARKitScenes dataset following the same
procedure as ScanNet++, obtaining the SfM point clouds
and the alignment between camera poses and the ground-
truth mesh. For Mip-NeRF 360 (Room), we restore the ab-
solute scale of the official COLMAP point cloud and poses
using a monocular metric depth estimator [5].

This cross-dataset setting is more challenging due to the
domain gap between datasets. Additionally, the RGB cap-
tures in ARKitScenes and Mip-NeRF 360 have a smaller
field of view compared to ScanNet++, making reconstruc-
tion from images more difficult. We compare QuickSplat
with 2DGS in Tab. 1 and Fig. 1, which demonstrate the gen-
eralization capability of our proposed method. Additional
reconstruction results are shown in Fig. 2.

Method Abs err↓ Acc (10cm)↑ Chamfer↓ Time

2DGS 0.6978 0.3590 0.6015 1780s
Ours 0.1775 0.7698 0.4301 111s

Table 1. Evaluation on ARKitScenes (5 scenes, no fine-tuning).
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Figure 1. Ours vs. 2DGS on ARKitScenes and MipNeRF 360.
To demonstrate the generalization ability of QuickSplat, we run
our model on ARKitScenes [2] and Mip-NeRF 360 [1] without
fine-tuning. Compared to 2DGS, QuickSplat produces more com-
plete geometry

Large scenes. We also demonstrate the capability to re-
construct larger scenes (e.g., indoor scenes containing mul-
tiple rooms) in Fig. 3, as the method is not constrained by
the number of input images. Note that the optimization
times for larger scenes would increase due to the increasing
number of frames during gradient accumulation. However,
the overall time is still substantially faster than the existing
methods.

3. Additional ablations
Steps We ablate the number of steps for the learned op-
timizer and post-optimization in Tab. 2. We observe that
the depth error decreases gradually over the 5 optimization
steps. Additional SGD optimization steps lead to a plateau
and require more time. On the other hand, the Chamfer
distance changes only marginally due to the good global
geometry generated by our learned initialization.

T = 0 T = 1 T = 2 T = 5 SGD=1k SGD=2k

Abs err↓ 0.0921 0.0881 0.0807 0.0732 0.0598 0.0578
Rel err↓ 0.0923 0.0792 0.0568 0.0431 0.0314 0.0292
Chamfer↓ 0.1478 0.1437 0.1448 0.1461 0.1361 0.1347
Time (s) 0.6 5.7 11 26 77 124

Table 2. Ablation over time steps.

Optimization and densification We experiment with
combining QuickSplat initialization with the original 2DGS
optimization and densification, instead of using our op-
timization and densification networks, under comparable
time constraints. As shown in Tab. 3, the learnable opti-
mization and densification networks achieve better recon-
struction in finer details (i.e., the accuracy metrics with
small thresholds). Although the original SGD optimiza-
tion and densification benefit from our initialization, our full
method remains more efficient.

Extend initializer to other method We demonstrate that
our initializer can be easily integrated into other Gaussian
splatting variants, such as SAGS [4]. Note that we mod-
ified SAGS to use 2D Gaussians instead of 3D Gaussians
as the representation for reconstructing 3D surfaces. As
shown in Tab. 4, SAGS with our initialization performs sig-
nificantly better than with SfM initialization. Moreover,
our full method, with the learned optimization and densi-
fication, reconstructs scenes more accurately and efficiently
than SAGS’s original optimization and densification.
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Figure 2. More reconstruction result of QuickSplat on ARKitscenes dataset.

Figure 3. Additional qualitative results of QuickSplat on large scenes. Our method is able to reconstruct large-scale scenes, e.g., scenes
containing multiple rooms, as it is not constrained by the number of the training views, and the network architecture is based on sparse
convolutions. Even though with more training frames, QuickSplat could cost more time to optimize, it is still considerable faster than other
state-of-the-arts.

Initializer Optimization & Densification Abs err↓ Acc (2cm)↑ Acc (5cm)↑ Chamfer↓ Time

Ours 2DGS w/o densify 0.0692 0.4650 0.7211 0.1571 39s
Ours 2DGS w/ densify 0.0668 0.4796 0.7338 0.1486 39s
Ours Ours 0.0732 0.5263 0.7674 0.1461 26s

Table 3. Ablation on optimization and densification. We compare Quicksplat’s optimizer and densifier with original 2DGS optimiziza-
tion (w/ and w/o densificaation) under similar time frame.

Initializer Optimization & Densification Abs err↓ Acc (2cm)↑ Acc (5cm)↑ Chamfer↓ Time

SfM SAGS w/o densify 0.1292 0.2781 0.5093 0.2879 429s
Ours SAGS w/o densify 0.0692 0.4724 0.7297 0.1633 253s
Ours SAGS w/ densify 0.0669 0.4825 0.7381 0.1625 276s
Ours Ours 0.0732 0.5263 0.7674 0.1461 26s

Table 4. Combined with SAGS [4]. We show that our initializer can be easily integrated into other methods, resulting in improved
performance. In addition, our learned densification and optimization are faster and more accurate than SAGS under the same initialization.
(Note that we modified SAGS to output 2D Gaussian splats for surface reconstruction.)
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