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Supplementary Material

A. Time Complexity Analysis
This section investigates the computational complex-
ity of MESA [39] and SGAD. Given source and target
images containing M and N areas, respectively, with
each area resized to H × W pixels, our analysis focuses
on the similarity computation stage.

A.1. MESA
MESA formulates area matching as a graph matching
problem, where each area in the source and target im-
ages is represented as a graph node. In the first stage,
activity maps are computed by applying self-attention
and cross-attention on feature maps that have been
downsampled to 1

8 of the original resolution. The simi-
larity of each paired area (Ri

A, Rj
B) is then determined

as the product of their activity map expectations. The
complexity is:

O(L × M × N × ((H ′ × W ′)2 × D)), (15)

where H ′ = H
8 , W ′ = W

8 , L is the number of attention
layers, and D is the feature dimension.

To reduce this complexity, MESA employs Area
Bayesian Network optimization to filter areas, reduc-
ing the number of areas to M ′ and N ′. The complexity
becomes:

O(L × M ′ × N ′ × ((H ′ × W ′)2 × D)), (16)

where M ′ < M and N ′ < N .
The subsequent graph matching has a computa-

tional complexity of:

O(M2 + N2). (17)

A.2. SGAD
SGAD adopts a distinct strategy. For each area, it gen-
erates a compact descriptor by first pooling the corre-
sponding DINOv2 features into a single vector. This
initial descriptor is subsequently refined through Ntr

layers of self-attention and cross-attention. The com-
putational complexity is:

O(Ntr × M × N × D), (18)

where D represents the feature dimension, which is in-
dependent of the image resolution.

Method Step Complexity

MESA [39]
Similarity Calculation O(L × M ′ × N ′ × (H ′ × W ′)2 × D)
Graph Matching O(M2 + N2)
Main Bottleneck O(L × M ′ × N ′ × (H ′ × W ′)2 × D)

SGAD
Similarity Calculation O(Ntr × M × N × D)
Descriptor Matching O(M × N)
Main Bottleneck O(Ntr × M × N × D)

Table 7. Complexity analysis of SGAD and MESA [39].

After generating the confidence matrix Ppr, SGAD
uses the MNN algorithm to compute the matching re-
sults. The complexity is:

O(M × N). (19)

A.3. Comparative Analysis
As shown in Tab. 7, the primary computational com-
plexity of both SGAD and MESA lies in the simi-
larity calculation module. MESA computes similar-
ity node by node, requiring a complexity as described
in Eq. (16), where the pixel-based activity map com-
putation limits parallelism, and the cost remains tied
to high-resolution image features. In contrast, SGAD’s
approach is independent of image resolution, which not
only lowers the theoretical complexity but also enables
more efficient hardware implementation, as discussed
next.

In the matching stage, SGAD utilizes the Mutual
Nearest Neighbor (MNN) algorithm, which operates di-
rectly on the dense confidence matrix Ppr, The MNN
algorithm benefits from efficient GPU parallelization
due to its simplicity and the dense matrix structure,
making it highly scalable for large-scale tasks. By con-
trast, the graph matching in MESA relies on iterative
optimizations over sparsely connected graphs, which
inherently limits its scalability and efficiency, especially
when dealing with a large number of areas.

To validate the theoretical analysis, we measured the
runtime performance of MESA and SGAD under vary-
ing numbers of areas (AreaNum). As shown in Tab. 8,
the empirical results closely align with the theoretical
predictions. When AreaNum increases from 11.18 to
30.89, the runtime of MESA increases by more than 6
times (from 49.92s to 311.63s). In contrast, when Are-
aNum increases from 15.13 to 36.44, SGAD exhibits
only a minor runtime increase of approximately 36%



Method Time(s)↓ AreaNum AreaMatchesNum
MESA [39] 49.92 11.18 7.42
SGAD 0.25 15.13 10.44
MESA [39] 311.63 30.89 19.91
SGAD 0.34 36.44 21.54

Table 8. Runtime comparison for the area matching stage
on the MegaDepth1500 benchmark. The results highlight
the superior efficiency of SGAD compared to MESA [39].

Pose AUC MegaDepth1500 benchmark(image size 1200x1200)
832x832 (area size) 640x640 (area size) 480x480 (area size)

@5◦ ↑ @10◦ ↑ @20◦ ↑ @5◦ ↑ @10◦ ↑ @20◦ ↑ @5◦ ↑ @10◦ ↑ @20◦ ↑
LoFTR 61.49 75.47 85.27 61.49 75.47 85.27 61.49 75.47 85.27
SGAD+LoFTR 66.24 78.40 86.75 65.10 77.90 86.44 65.12 77.86 86.56
DKM 61.11 74.63 84.02 61.11 74.63 84.02 61.11 74.63 84.02
SGAD+DKM 66.40 78.38 86.51 65.97 78.02 86.38 65.91 78.27 86.52
ROMA 65.68 78.15 86.68 65.68 78.15 86.68 65.68 78.15 86.68
SGAD+ROMA 68.43 80.35 88.26 68.12 80.24 88.14 67.17 79.07 87.32

Table 9. Relative pose estimation results (%) on
MegaDepth1500. Measured in AUC (higher is better). The
baseline methods (LoFTR, DKM, ROMA) were evaluated
on the full-resolution images, and their results are presented
across all columns for direct comparison.

(from 0.25s to 0.34s), demonstrating its scalability and
computational efficiency in handling large-scale tasks.

Ultimately, the significant performance gap ob-
served in Tab. 8 stems from these fundamental archi-
tectural differences. The reliance of MESA on pixel-
based activity maps and node-by-node matching leads
to significant bottlenecks, particularly in high-density
scenarios. By contrast, the area descriptor approach
and dense matrix computations employed by SGAD
drastically reduce complexity. Its ability to fully ex-
ploit GPU parallelization underscores its efficiency and
suitability for large-scale tasks.

B. Effect of Area Size on Different Point
Matchers

In this section, we analyze the impact of different area
sizes on the performance of various point matchers
on the MegaDepth1500 benchmark. Image size re-
sized to 1200 × 1200. For the area sizes, we tested
832 × 832, 640 × 640, and 480 × 480. As shown
in Tab. 9, SGAD significantly improves the perfor-
mance of LoFTR, DKM, and Roma across multiple
area sizes. This further demonstrates the effectiveness
of SGAD in improving the performance of different
point matchers.

C. Failure Cases
In Fig. 7, we illustrate SGAD’s primary failure mode,
which arises in challenging cases that combine high

Figure 7. Failure cases of SGAD, demonstrating its vulner-
ability in challenging cases that combine high visual simi-
larity and extreme geometric transformations. Mismatched
areas are shown in red, correct matches in yellow.

visual similarity with extreme geometric transforma-
tions. The red color indicates mismatched areas, while
the yellow color highlights correctly matched ones.

This failure stems from a detrimental synergy be-
tween our model’s architecture and its training data.
Our architecture, prioritizing global context via DI-
NOv2 and pooling, inherently sacrifices the fine-
grained local features required to distinguish between
visually similar areas. This architectural limitation be-
comes particularly critical because the training data
(MegaDepth and ScanNet) lacks sufficient examples
of extreme geometric transformations. Consequently,
the model is not explicitly trained to be robust against
such distortions. When confronted with them, it must
rely more heavily on the very local details that the ar-
chitecture has already discarded, leading to inevitable
matching failures.

D. Additional Qualitative Results
D.1. Area Matching
This section provides a qualitative comparison of
area matching between SGAD, MESA [39], and
DMESA [38]. As shown in Fig. 8, SGAD consistently
finds more content-consistent area matches across the
MegaDepth and ScanNet datasets. This improved con-
sistency establishes a stronger foundation for subse-
quent pixel-level matching.

D.2. Relative Pose Estimation
Qualitative results for relative pose estimation are pre-
sented for the MegaDepth ( Figs. 9 and 10) and Scan-
Net ( Figs. 11 and 12) datasets. Following the proto-
col of LoFTR [31], we report rotation and translation
errors. Match precision is visualized by epipolar er-
ror, where red indicates errors exceeding the threshold
(1 × 10−4 for MegaDepth and 5 × 10−4 for ScanNet).
Across both datasets, our method consistently achieves
more correct matches and lower pose errors, highlight-
ing its robustness and accuracy under diverse condi-
tions.
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Figure 8. Qualitative comparison of area matching results on the MegaDepth and ScanNet datasets. Our method (SGAD) is
compared against MESA [39] and DMESA [38]. The visualizations show that SGAD consistently identifies more semantically
coherent area pairs, providing a better foundation for subsequent fine-grained matching.
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Figure 9. Qualitative comparison of matching methods on the MegaDepth dataset. Our method (SGAD) is compared
against MESA [39], DMESA [38], and DKM [10]. To ensure a fair comparison of the upstream area matchers, SGAD,
MESA, and DMESA all use DKM as the downstream point matcher, while DKM is also evaluated as a standalone baseline.
Matches with an epipolar error greater than 1 × 10−4 are highlighted in red. The results show SGAD leads to more correct
final matches and lower pose errors.
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Figure 10. Qualitative comparison of matching methods on the MegaDepth dataset (continued).
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Figure 11. Qualitative comparison of matching methods on the ScanNet dataset. Our method (SGAD) is compared against
MESA [39], DMESA [38], and DKM [10]. To ensure a fair comparison of the upstream area matchers, SGAD, MESA, and
DMESA all use DKM as the downstream point matcher, while DKM is also evaluated as a standalone baseline. Matches
with an epipolar error greater than 5 × 10−4 are highlighted in red. The results show SGAD leads to more correct final
matches and lower pose errors.
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Figure 12. Qualitative comparison of matching methods on the ScanNet dataset (continued).
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