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1. Implementation Details
1.1. Hyperparameters
All models use AdamW [5] as the optimizer, set the learning
rate as 5 × 10−3, and apply CosineAnnealingLR [4] as the
learning rate scheduler. We set batch sizes as 84 and 96 for
ContactDiffuser and GraspDiffuser respectively.

1.2. Model Architecture
Our models adopt the Transformer [7] encoder layer. We
design individual layers for them. Contactdiffuser is com-
posed of 8 layers, and GraspDiffuser is composed of 4 lay-
ers. The architecture can be found in Figure 1.

2. More Experimental Results
This section performs more detailed experiments on the
proposed method and baselines.

2.1. Analysis on Different Penetration Volume for
Grasp Prediction Quality

To further evaluate the quality of generated human grasps,
we set different thresholds for QR. The penetration from is
ranged from 1 × 10−6 cm3 to 4 × 10−6 cm3 and the simu-
lation displacement is ranged from 1 cm to 3 cm. The com-
parsions are shown in Figs. 2 to 4. In most combinations,
our method outperforms all other baselines. However, in
the strictest setting, where PV is smaller than 1×10−6 cm3,
SceneDiffuser shows better performance.

2.2. Performance Analysis on the Impact of Object
Size for Stacking

We conduct a comprehensive study on stacking. There are
a total of six bricks in the testing set. We divide them into 2
categories, small and large. The bricks F, I, and K belong to
the small object set. The bricks N, R, and V belong to the
large object set. As discussed in the main paper, the two sets
have a performance gap. In Table 1, we show the quantita-
tive results for each of them. All methods struggle to gener-
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ate task-oriented grasping poses for small bricks, leading to
large Init OPP. We show the failure case for small bricks in
the main paper. This suggests the future direction of gener-
ating realistic contact maps for tiny objects.

3. Additional Qualitative Results
This section displays more qualitative results of the pro-
posed method and baseline algorithms. Our method out-
performs all the baselines quantitatively. ContactDiffuser
generates a more realistic contact map, and GraspDiffuser
can synthesize more natural and stable human grasps.

3.1. Visualization of Predicted Human Grasps
In Figs. 5 to 9 we show the synthesized grasping poses of
our method and baselines. We also show the failure cases
from our method in Figs. 10 to 12. In the Figs. 13 to 28 we
show the synthesized grasping poses of our method for all
objects in the testing set.

3.2. Contact Maps
In Figs. 29 to 55, we show the contact maps synthesized by
ContactDiffuser and ContactCVAE [3] and corresponding
human grasps synthesize by GraspDiffuser.

3.3. Limitation
Figs. 30 and 39 show the predicted contact map and grasp-
ing poses for bowl and tape. Our method struggles to pre-
dict an appropriate contact map for them, which leads to
severe penetration or unstable grasp. ContactCVAE [3] can
also not predict realistic contact maps for them. As men-
tioned in the main paper, ContactCVAE tends to predict
over-smooth results. Noticeably, GraspDiffuser can gener-
ate more natural and stable grasping poses with the output
of ContactCVAE.
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Figure 1. The architectural designs of the proposed context- and task-aware diffusers.

Figure 2. Different thresholds of QR for Placing.



Figure 3. Different thresholds of QR for Stacking.

Figure 4. Different thresholds of QR for Shelving.



Table 1. Ablation study of our method. We denote GraspDiffuser as GD, ContactDiffuser as CD, and ContactCVAE as CC. The bricks F,
I, and K belong to the small object set. The bricks N, R, and V belong to the large object set.

Brick Method PV↓ SD↓CR(%)↑QR(%)↑ DS ↑ Init
OPP(%)↓ Goal

OPP(%)↓ TS ↑

F
Simple-GD 0.31 2.55 81.62 63.00 57.25 28.03 15.36 0.383

CC [3] + GD 0.32 2.34 84.75 69.50 49.58 24.94 7.34 0.483
CD + GD 0.25 2.03 83.50 71.25 46.41 26.80 7.35 0.483

I
Simple-GD 0.34 0.70 98.62 92.75 57.25 30.68 11.11 0.571

CC [3] + GD 0.47 0.52 99.62 96.37 48.70 24.62 3.18 0.703
CD + GD 0.30 0.75 95.87 94.25 53.44 27.06 6.29 0.644

K
Simple-GD 0.60 1.06 96.62 87.00 57.32 30.64 13.72 0.520

CC [3] + GD 0.57 0.87 96.50 90.50 50.03 26.63 5.45 0.627
CD + GD 0.38 1.06 90.50 86.50 50.60 29.44 6.22 0.572

N
Simple-GD 0.67 1.88 95.50 76.00 67.79 22.17 5.40 0.559

CC [3] + GD 1.69 1.58 99.62 77.75 57.76 9.54 2.00 0.689
CD + GD 2.25 0.98 100.00 76.12 48.99 3.12 3.86 0.709

R
Simple-GD 0.59 1.87 97.85 73.37 69.70 21.83 7.05 0.533

CC [3] + GD 1.33 0.87 99.87 90.37 54.49 8.27 1.16 0.819
CD + GD 1.63 0.70 100.00 88.00 45.93 1.59 2.04 0.848

V
Simple-GD 0.68 1.81 99.50 74.25 68.41 18.46 6.25 0.567

CC [3] + GD 1.52 0.75 100.00 91.00 54.11 7.33 0.74 0.837
CD + GD 1.74 0.64 100.00 89.75 46.15 1.64 1.28 0.871
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Figure 5. Visualization of predicted human grasps for trophy from Ours and ContactGen [3], FLEX [6], GraspTTA [2], SceneDiffuser [1].
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Figure 6. Visualization of predicted human grasps for toaster from Ours and ContactGen [3], FLEX [6], GraspTTA [2], SceneDiffuser [1].
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Figure 7. Visualization of predicted human grasps for brick V from Ours and ContactGen [3], FLEX [6], GraspTTA [2], SceneDiffuser [1].
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Figure 8. Visualization of predicted human grasps for trophy from Ours and ContactGen [3], FLEX [6], GraspTTA [2], SceneDiffuser [1].
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Figure 9. Visualization of predicted human grasps for toaster from Ours and ContactGen [3], FLEX [6], GraspTTA [2], SceneDiffuser [1].
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Figure 10. Visualization of failure predicted human grasp for trophy and camera from Ours
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Figure 11. Visualization of failure predicted human grasp for brick R and brick V from Ours
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Figure 12. Visualization of failure predicted human grasp for trophy and camera from Ours
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Figure 13. Visualization of predicted human grasps on bottle, bowl, and jar.
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Figure 14. Visualization of predicted human grasps on camera, mug, and lightbuld.
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Figure 15. Visualization of predicted human grasps on box, tape, and star fruit
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Figure 16. Visualization of predicted human grasps on shoe, elephant doll, and bear doll
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Figure 17. Visualization of predicted human grasps on camera, toy car, and doll
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Figure 18. Visualization of predicted human grasps on stapler, tapemeasure, and toy
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Figure 19. Visualization of predicted human grasps on vase, video game controller, and trophy
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Figure 20. Visualization of predicted human grasps on brick F, brick I, and brick K
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Figure 21. Visualization of predicted human grasps on brick N, brick R, and brick V
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Figure 22. Visualization of predicted human grasps on bottle, bowl, and camera.
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Figure 23. Visualization of predicted human grasps on jar, mug, and lightbuld.
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Figure 24. Visualization of predicted human grasps on start fruit, toaster, and tape
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Figure 25. Visualization of predicted human grasps on shoe, elephant doll, and bear doll
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Figure 26. Visualization of predicted human grasps on doll, camera, and car
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Figure 27. Visualization of predicted human grasps on stapler, tapemeasure, and toy
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Figure 28. Visualization of predicted human grasps on trophy, vase, and video game controller
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Figure 29. Visualization of predicted contact map and grasp on bottle from ContactCVAE [3] and Ours
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Figure 30. Visualization of predicted contact map and grasp on bowl from ContactCVAE [3] and Ours
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Figure 31. Visualization of predicted contact map and grasp on jar from ContactCVAE [3] and Ours
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Figure 32. Visualization of predicted contact map and grasp on mug from ContactCVAE [3] and Ours
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Figure 33. Visualization of predicted contact map and grasp on starfruit from ContactCVAE [3] and Ours
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Figure 34. Visualization of predicted contact map and grasp on toaster from ContactCVAE [3] and Ours
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Figure 35. Visualization of predicted contact map and grasp on lightbuld from ContactCVAE [3] and Ours
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Figure 36. Visualization of predicted contact map and grasp on shoe from ContactCVAE [3] and Ours
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Figure 37. Visualization of predicted contact map and grasp on elephant doll from ContactCVAE [3] and Ours
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Figure 38. Visualization of predicted contact map and grasp on doll from ContactCVAE [3] and Ours
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Figure 39. Visualization of predicted contact map and grasp on tape from ContactCVAE [3] and Ours
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Figure 40. Visualization of predicted contact map and grasp on bear doll from ContactCVAE [3] and Ours
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Figure 41. Visualization of predicted contact map and grasp on camera 2 from ContactCVAE [3] and Ours
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Figure 42. Visualization of predicted contact map and grasp on toy car from ContactCVAE [3] and Ours
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Figure 43. Visualization of predicted contact map and grasp on stapler from ContactCVAE [3] and Ours
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Figure 44. Visualization of predicted contact map and grasp on tape measure from ContactCVAE [3] and Ours
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Figure 45. Visualization of predicted contact map and grasp on toy from ContactCVAE [3] and Ours
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Figure 46. Visualization of predicted contact map and grasp on trophy from ContactCVAE [3] and Ours
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Figure 47. Visualization of predicted contact map and grasp on vase from ContactCVAE [3] and Ours
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Figure 48. Visualization of predicted contact map and grasp on video game controller from ContactCVAE [3] and Ours
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Figure 49. Visualization of predicted contact map and grasp on camera from ContactCVAE [3] and Ours
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Figure 50. Visualization of predicted contact map and grasp on brick F from ContactCVAE [3] and Ours
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Figure 51. Visualization of predicted contact map and grasp on brick I from ContactCVAE [3] and Ours
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Figure 52. Visualization of predicted contact map and grasp on brick K from ContactCVAE [3] and Ours
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Figure 53. Visualization of predicted contact map and grasp on brick N from ContactCVAE [3] and Ours
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Figure 54. Visualization of predicted contact map and grasp on brick R from ContactCVAE [3] and Ours
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Figure 55. Visualization of predicted contact map and grasp on brick V from ContactCVAE [3] and Ours
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