Underwater Visual SLAM with Depth Uncertainty and Medium Modeling

Supplementary Material

This supplementary document provides additional exper-
imental results and extended discussions of our approach,
which are organized as follows:

e Additional Results (§A)
e Dataset Details (§B)

e Model Details (§C)

* Discussion (§D)

A. Additional Results

Failure Cases. Fig. C1 demonstrates failure cases in (a)
rendering quality and (b) tracking trajectories. Although
our method achieves successful convergence on most se-
quences, failures occasionally occur in particularly chal-
lenging long-duration trajectories, e.g., the length of tra-
jectory shown in (b) exceeds three times that of typical
sequences. Moreover, rendering artifacts appear in diffi-
cult scenarios characterized by severe photometric varia-
tions and poor illumination. In future work, we plan to ex-
plore advanced approaches, such as integrating underwater-
specific image enhancement techniques [3] and multi-
sensor fusion methods [7], to further enhance robustness
and tracking accuracy in challenging underwater scenarios.

B. Dataset Details

Data Processing. All underwater datasets are reorganized
following the input format of the TUM dataset [9].
Dataset Details. FLSea [8] consists of two primary subsets,
Canyons and Red Sea, each capturing diverse underwater
environments with varying dynamics and visual characteris-
tics. The Canyons subset includes four sequences designed
to evaluate SLAM robustness in underwater scenarios: U
Canyon (UC) with 2,895 frames, Flatiron (Fla) with 2,475
frames, Horse Canyon (HC) with 2,230 frames, and Tiny
Canyon (TC) with 1,012 frames. The Red Sea subset con-
sists of eight distinct sequences covering diverse paths and
loops: Northeast Path (NP, 2,593 images), Landward Path
(LP, 1,204 images), Dice Path (DP, 1,428 images), Pier Path
(PP, 1,695 images), Coral Table Loop (CTL, 1,017 images),
Cross Pyramid Loop (CPL, 1,652 images), Big Dice Loop
(BDL, 3,159 images), and Sub Pier (SP, 1,091 images).
MIMIR-UW [1] consists of four distinct underwater sce-
narios: SeaFloor, SeaFloor Algae, OceanFloor, and Sand-
Pipe. The SeaFloor scenario contains three sequences:
trackO (t0) with 2,847 frames, track1 (t1) with 2,030 frames,
and track2 (t2) with 2,537 frames. The SeaFloor Al-
gae scenario expands this with three additional sequences:
trackO (t0) having 2,934 frames, trackl (t1) having 2,076
frames, and track2 (t2) having 2,489 frames. The Ocean-
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Figure C1. Failure cases of (a) rendering and (b) tracking trajec-
tory in MIMIR-UW [1] (§A).

Floor scenario specifically introduces illumination-related
challenges through three subsets: trackO-light (t0-1, 2,421
frames), trackO-dark (t0-d, 2,404 frames), and trackl-light
(t1-1, 6,263 frames), highlighting photometric degradation
effects across identical paths. Lastly, the SandPipe sce-
nario addresses feature-scarce environments, offering two
sequences: trackO-dark (t0-d, 2,741 frames) and trackO-
light (t0-1, 2,605 frames), depicting sandy substrates with
low-contrast lighting conditions.

Tartanair [11] is a large-scale synthetic benchmark
widely used for visual SLAM research. For evaluating un-
derwater SLAM methods, we adopt its Ocean scenarios,
which include 12 Easy-level and 10 Hard-level sequences.
The Easy-level sequences simulate relatively stable marine
environments featuring moderate turbulence and consistent
illumination, whereas the Hard-level sequences introduce
significant challenges such as severe photometric variations
and transient occlusion events.

C. Model Details

Tracking and Mapping. For tracking, we initialize dense
bundle adjustment layers using pre-trained weights [10] de-
rived from large-scale monocular videos, while the mapping
module is trained from scratch. In the mapping loss func-
tion (Eq. 13), we balance £; and Lpssiv terms in L), with
weighting factors of 0.7 and 0.3, respectively.

D. Discussion

Terms of use, Privacy, and License. The datasets
and algorithms described in this work are made avail-
able exclusively for academic research purposes. For
privacy protection, no personally identifiable information
was recorded during underwater vehicle operation, and
any human-annotated data utilized herein (if applicable)
was anonymized through cryptographic hashing of opera-
tor identifiers. Third-party datasets referenced in this study,
such as FLSea [8], MIMIR-UW [1], and TartanAir [11],
maintain their respective Creative Commons Attribution-



NonCommercial 4.0 International (CCBY-NC4.0) licenses.
Limitations. (1) Our tracking module utilizes weights
pre-trained on large-scale synthetic datasets for dense bun-
dle adjustment, achieving favorable performance on cer-
tain synthetic sequences, e.g., TartanAir-Ocean. To fur-
ther enhance real-world applicability, future work could in-
volve collecting a substantial corpus of real-world underwa-
ter sequences pairs for practical applications. (2) Although
our approach demonstrates robust reconstruction capabili-
ties across multiple datasets, it currently does not explicitly
model dynamic underwater scenes, potentially limiting its
effectiveness in highly dynamic environments. Integrating
methods like 4D Gaussian Splatting for dynamic scene ren-
dering [13] could address this limitation in future studies.
Future Direction. (1) Unlike terrestrial or aerial scenarios,
sonar sensors play an indispensable role underwater. Opti-
cal sensors (i.e., cameras) are prone to performance degra-
dation under challenging illumination conditions, such as
dark marine environments. In contrast, sonar sensors pro-
vide enhanced robustness for underwater mapping tasks.
Therefore, multimodal fusion (e.g., cameras and sonar) will
be a crucial research direction for navigation [2, 4-6, 12].
(2) Visual SLAM methods inevitably accumulate errors
over long distances, undermining reliability and robustness
in large-scale underwater applications. Addressing error
accumulation and drift correction remains a longstanding
challenge, making error correction methods a central focus
of future research. (3) Real-world underwater conditions
(e.g., illumination variability, hydrodynamic disturbances,
and marine animal activities) constantly fluctuate. Future
efforts will involve collecting a broader range of diverse
underwater data or introducing controllable synthetic data
generation [14—17], further improving robustness and gen-
eralization capabilities across underwater environments.
Broader Impacts. The ocean hosts abundant life and
plays a vital role in the global carbon cycle. The mo-
tivation behind our DUV-SLAM approach is to advance
fully autonomous underwater vehicles, facilitating deeper
and more efficient exploration of one of Earth’s largest and
most diverse ecosystems. Additionally, we encourage fur-
ther research efforts toward autonomous biological detec-
tion, tracking, monitoring, and environmental management
in complex marine habitats.
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