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A. Discussion and Limitation

Closed-Set Segmentation. To enhance open-world general-
ization, COSINE sacrifices some performance in closed-set
scenarios. For example, on COCO, COSINE achieves a 50.6
PQ and 42.0 AP, while OpenSeeD obtains 59.5 PQ and 53.2
AP, and DINOv achieves 57.7 PQ and 50.4 AP. However,
COSINE outperforms these models on unseen datasets. We
argue that pre-trained foundation models capture a broader
range of visual knowledge. Fine-tuning these models on a
limited segmentation dataset can lead to performance im-
provements in closed-set scenarios, but it may reduce their
generalization ability in unseen scenarios. Therefore, unlike
existing methods, which train all model parameters, CO-
SINE uses frozen foundation models. We believe that the
model’s ability to generalize to open-world scenarios is more
critical.
Model Pool. The Model Pool explores a limited set of foun-
dation models. In our preliminary experiments, we investi-
gated the impact of the SAM encoder but did not observe
significant performance improvements. Additionally, it intro-
duced greater computational cost and constrained the input
image resolution.
CLIP Embeddings. While COSINE leverages CLIP embed-
dings to enable open-vocabulary segmentation, its reliance
on CLIP alone restricts the capacity to capture fine-grained
visual attributes, such as texture, material properties, or nu-
anced object conditions. To address this limitation, COSINE
introduces a flexible framework designed to facilitate multi-
modal collaboration across diverse foundation models. This
architecture allows seamless integration of more expressive
backbones, such as multimodal large language models, in
future extensions, thereby enhancing the model’s ability to
support fine-grained, open-world segmentation. We envi-
sion COSINE as a step forward in bridging vision-language
representations and structured segmentation tasks. Its gener-
ality and extensibility offer a promising foundation for future
research aimed at fine-grained understanding and long-tail
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concept segmentation in complex, open-world scenarios.
Discrepancy with [1]. Unlike [1], which suggests that multi-
modal in-context learning is predominantly driven by textual
signals with minimal contribution from the visual modality,
COSINE demonstrates clear cross-modal synergy, as shown
in Table 5. We attribute the discrepancy with [1] to the use of
weaker image encoders in their framework. As highlighted
in [15, 16], strong visual backbones (e.g., DINOv2) are es-
sential for enabling effective image-conditioned reasoning
in multimodal models.
Relation to Other Paradigms. In addition to open-
vocabulary and in-context segmentation, another important
paradigm in open-world segmentation focuses on anomaly
or out-of-distribution (OOD) detection. These methods iden-
tify pixels or instances from unseen categories as anomalies,
which can then be incrementally learned [3, 14]. COSINE
offers a multimodal approach that effectively addresses these
challenges, serving as a promising direction for advancing
open-world segmentation.
Limitations. Although our experiments validate that foun-
dation models, such as DINOv2 and CLIP, exhibit com-
plementary information, this work does not explore more
advanced models with alternative training strategies, such as
MLLMs [5, 17, 19] and diffusion models [10, 13]. Further-
more, while COSINE leverages multiple foundation models
to achieve complementary information and enhance gener-
alization in open-world scenarios, it inevitably introduces
higher computational costs. One potential solution is to dis-
till the knowledge from different models into a single model.
These challenges will be the focus of our future work.
Broader Impacts. Our approach is built upon open-source
foundation models and only trains a lightweight decoder,
which significantly reduces both training costs and carbon
emissions. We do not anticipate any significant ethical or
social concerns now.

B. Implementation Details
Training Details. We establish the frozen Model Pool
by leveraging DINOv2 (ViT-L) [9] and CLIP (ConvNeXt-
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Model Prompt LVIS-92i ADE20K

DINOv2 CLIP vision text 1-shot 5-shot PQ AP mIoU

! ! 24.3 27.7 - - -
! ! ! 24.5 27.8 - - -

! ! - - 6.6 2.3 26.8
! ! ! - - 13.2 7.6 30.2
! ! ! ! 27.7 32.1 17.7 8.1 30.4

Table S1. Effect of different models and training branches. All
models are trained for 10k steps.

Large) [7, 12] as foundational models, while only training
lightweight SegDecoder modules. Specifically, the single-
scale and multi-scale variants of the SegDecoder contain
25M and 32M trainable parameters, respectively. The Image-
Prompt Aligner has one block and the Multi-Modality De-
coder has six blocks. All training data is converted to in-
stance masks, and stuff classes are treated as single-instance
categories. So we train only for instance segmentation, and
merge instances by class at inference for semantic segmenta-
tion. We optimize COSINE for 50K steps with a batch size
of 64 using the Adam optimizer [8] (β1 = 0.9, β2 = 0.999).
A linear learning rate scheduler is employed with a base
learning rate of 1e−4 and a 100-step warmup phase. The
weight decay is set to 0.05. For COCO and Objects365, we
apply random horizontal flipping and large-scale jittering
(LSJ) [2] with a random scale sampled from range 0.1 to 2.0,
followed by a fixed-size crop to 896× 896 for DINOv2. For
CLIP, the images are resized to 1024 × 1024 before being
inputted. For referring segmentation datasets, we only resize
the images without flipping and cropping operations.
Evaluation. For one-shot semantic segmentation, the in-
context examples are from the support sets. Like [6], we
simply concatenate diverse image examples to accommo-
date the few-shot learning scenario. For few-shot instance
segmentation, we randomly select 10 samples (or all avail-
able samples if fewer than 10 are present) for each category.
We integrate the representations of image prompts and text
prompts to form the token features. We enhance the classi-
fication score by pooling CLIP features using the predicted
masks, thereby improving the generalization capability of
the model. Our method can seamlessly adopt the approach
of [18] to perform open-vocabulary tasks. For VOS, we
select the first frame of the video as the image example and
deploy a memory mechanism to store intermediate results,
following [6]. For referring segmentation, we adhere to the
evaluation pipeline of LISA [4].

C. Additional Results

Effect of different models and training branches. We
investigate the impact of different foundation models across
various training branches. As shown in Table S1, DINOv2
and CLIP are commonly used foundation models for in-

context and open-vocabulary segmentation tasks, respec-
tively. The introduction of additional models further en-
hances performance on these tasks. When different models
are jointly used for multi-modal training, complementary in-
formation is shared, enabling the models to collaborate more
effectively and achieve stronger generalization performance.
Temporal consistency assessment. To comprehensively
assess the temporal stability of video segmentation methods,
we report the STB [11] scores on the DAVIS 2017 dataset.
The results are as follows: Painter achieves an STB score of
0.91, while both SegGPT and COSINE reach 0.96, indicating
significantly higher temporal consistency.
Visualizations. As shown in Fig. S1, we visualize the
segmentation results under in-context settings, including
example-based semantic segmentation, example-based in-
stance segmentation and video object segmentation. As
shown in Fig. S2, we visualize the open-vocabulary segmen-
tation and referring segmentation. These results demonstrate
that COSINE achieves highly accurate predictions across
various modalities and granularities, highlighting its strong
potential for open-world generalization.
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(a) Example-based Semantic Segmentation

(b) Example-based Instance Segmentation

(c) Video Object Segmentation

Figure S1. Visualizations of in-context segmentation tasks. (a) Example-based semantic segmentation on LVIS dataset. The left image with
the blue mask is the image example, and the right image with the green mask is the result. (b) Example-based instance segmentation on
LVIS dataset. We will obtain instance outputs sharing the same classes with the given image prompt. (c) Video object segmentation on the
YouTuBe-VOS 2019 dataset.



(a)  Open-Vocabulary Segmentation

(b) Referring Segmentation

Figure S2. Visualizations of open-vocabulary segmentation and referring segmentation.
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