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Supplementary Material

In this part, we provide a taxonomic summary of related
works, theoretical analysis, more experimental results, as
well as limitations and future works that cannot fit into the
main paper due to the page limit.

A. Taxonomic Summary of Related Works

In Tab. 4, we provide a taxonomic summary of related
works on personalized text-to-image generation from three
aspects, including zero-shot flexibility, domain agnosticism,
and model agnosticism.

B. Theoretical Analysis

We analyze the generalized error bounds for the two strate-
gies: fine-tuning KV mapping weights in previous methods
and learning square mapping matrices in our approach, in
the following theorem:

Theorem 1. Assume that Xt, Xi ∈ Rc are c-dimensional
random variables in spaces of a text encoder and an im-
age encoder, respectively, W a ∈ Rc×d is the key (value)
mapping matrix that maps Xt to the feature space of a pre-
trained text-to-image diffusion model a, i.e., Xa

t = XtW
a,

W a
ft ∈ Rc×d fine-tuned from W a represents the transfor-

mation from the image space to the diffusion feature space,
i.e. Xa

i = XiW
a
ft, and A ∈ Rc×c is a square matrix

that transforms a given Xi to its correspondence in the text
space, i.e., W a

ft = AW a. We would like to generalize
the fine-tuned W a

ft to an arbitrary unseen text-to-image dif-
fusion model b with the key (value) matrix W b.

If we directly apply Wft to compute Xb
i , i.e., Xb

i =
XiW

a
ft, the expectation of square error between Xb

i and
the optimal Xb∗

i = XiW
b∗
ft , where W b∗

ft = A∗W b, has the
following upper bound:

E[∥Xb
i−Xb∗

i ∥22] ≤ E[∥Xi∥22](∥A∥22∥W a −W b∥22
+ ∥W b∥22(∥A− I∥22 + ∥A∗ − I∥22)),

(5)

where I denotes an identity matrix.
If we compute Xb

i via Xb
i = XiAW b, the expectation of

the square error has the following upper bound:

E[∥Xb
i−Xb∗

i ∥22] ≤ E[∥Xi∥22]∥W b∥22(∥A−I∥22+∥A∗−I∥22).
(6)

Proof. For Eq. 5, if Xb
i = XiW

a
ft, through the given con-

ditions, we have:

E[∥Xb
i −Xb∗

i ∥22] =E[∥XiAW a −XiA
∗W b∥22]

≤E[∥Xi∥22]∥AW a −AW b

+AW b −A∗W b∥22
≤E[∥Xi∥22](∥AW a −AW b∥22
+ ∥AW b −A∗W b∥22)

≤E[∥Xi∥22](∥A∥22∥W a −W b∥22
+ ∥W b∥22∥A− I + I −A∗∥22)
≤E[∥Xi∥22](∥A∥22∥W a −W b∥22
+ ∥W b∥22(∥A− I∥22 + ∥A∗ − I∥22)),

(7)
where the 1st and 3rd inequalities stem from the submulti-
plicative property of matrix norms, and the 2nd and 4th in-
equalities are established according to the triangle inequal-
ity. For Eq. 6, if Xb

i = XiAW b, the proof is the same as
that for the term ∥AW b −A∗W b∥22 in Eq. 7:

E[∥Xb
i −Xb∗

i ∥22] =E[∥XiAW b −XiA
∗W b∥22]

≤E[∥Xi∥22]∥AW b −A∗W b∥22
≤E[∥Xi∥22]∥W b∥22(∥A− I∥22
+ ∥A∗ − I∥22).

(8)

We can observe that the term ∥A∥22∥W a−W b∥22 is elim-
inated in our method, which indicates that our approach is
insensitive to the discrepancy of feature spaces across seen
and unseen backbones. Given that text and image features
are based on CLIP models [33], which have been trained for
text-image alignment, the term ∥A∗−I∥22 can be considered
small.

We also provide an illustrative visualization in Fig. 11 for
the superiority of our method when generalizing to unseen
models.

C. More Experimental Results
More Ablation Studies: To illustrate the effectiveness of
the proposed technical methods, we provide comprehen-
sive ablation studies in Fig. 15, including results on 4 ar-
chitectures, including the seen Stable Diffusion 1.4, Base
Diffusion, Small Diffusion, and Tiny Diffusion, by the full
method, the method fine-tuning the key and value mappings
in cross-attention, the method with only square key and
value mappings without sharing the mappings within scale,



Method Venue Zero-Shot Domain-Agnostic Model-Agnostic

TextualInversion [14] ICLR’23 ✗ ✓ ✗
DreamBooth [37] CVPR’23 ✗ ✓ ✗

Customize Diffusion [22] CVPR’23 ✗ ✓ ✗
E4T [15] TOG’23 ✗ ✓ ✗

Break-A-Scene [2] SIGGRAPH Asia’23 ✗ ✓ ✗
ProSpect [51] TOG’23 ✗ ✓ ✗

DisenBooth [7] ICLR’24 ✗ ✓ ✗
FaceStudio [49] Arxiv’23 ✓ ✗ ✗
PhotoMaker [26] CVPR’24 ✓ ✗ ✗

InstantID [44] ArXiv’24 ✓ ✗ ✗
StableIdentity [45] ArXiv’24 ✓ ✗ ✗

ELITE [47] ICCV’23 ✓ ✓ ✗
BLIP-Diffusion [24] NeurIPS’23 ✓ ✓ ✗

SuTI [8] NeurIPS’23 ✓ ✓ ✗
SubjectDiffusion [29] SIGGRAPH’24 ✓ ✓ ✗

IP-Adapter [50] ArXiv’23 ✓ ✓ ✗
InstantBooth [39] CVPR’24 ✓ ✓ ✗
SSR-Encoder [52] CVPR’24 ✓ ✓ ✗

MoMA [41] ECCV’24 ✓ ✓ ✗
DisEnvisioner [16] ICLR’25 ✓ ✓ ✗

UniReal [9] CVPR’25 ✓ ✓ ✗
FlexIP [18] ArXiv’25 ✓ ✓ ✗

OminiControl [43] ICCV’25 ✓ ✓ ✗

Ours ICCV’25 ✓ ✓ ✓

Table 4. Taxonomy of personalized text-to-image generation and comparisons with previous works.
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Figure 11. An illustrative visualization of previous and our method
when generalizing to novel unseen diffusion models. The notions
here are consistent with Theorem 1 in the main manuscript.
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Figure 12. The shared and square key and value mappings learned
by a small architecture are generalizable to larger models as well.
In this example, the seen architecture is Tiny Diffusion, while the
unseen model is Small Diffusion.

the method without hierarchical attention, and the method
without optimal transport prior. In general, the square and
shared key and value mappings are the most critical fac-
tors to achieve cross-architecture generalization. The hier-
archical attention improves the preservation of local details
and achieves a better trade-off between text adherence and
appearance preservation. And the optimal transport prior
regulates the layout of generated subjects effectively, espe-
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Figure 13. It is also feasible to adopt timestep-dependent subject
representations to achieve similar functionalities of fine-tuning key
and value mappings in existing works.
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Figure 14. It would benefit cross-architecture generalization if
more diffusion models are incorporated during training. In this
example, we train the subject encoders on Stable Diffusion and
Tiny Diffusion and test them on Small Diffusion. Compared with
training only on Stable Diffusion, it performs better in the preser-
vation of local patterns.

cially on architectures with relatively large differences from
the seen one, e.g., Tiny Diffusion.

Generalization from Small to Large Architectures:
Following existing works [24, 47, 50], we adopt Stable Dif-
fusion as the seen architecture in training and try to gen-
eralize the subject encoder to smaller models such as Base
Diffusion, Small Diffusion, and Tiny Diffusion. Here, we
demonstrate that it is also feasible for small-to-large gener-
alization. As shown in Fig. 12, we train the subject encoder
and shared key and value mappings on Tiny Diffusion and



Method GPU Iter. Data

BLIP-Diffusion [24] 16 A100 500K 129M
IP-Adapter [50] 8 V100 1M 10M

ELITE [47] 4 V100 400K 125K

Ours 4 RTX6000Ada 120K 125K

Table 5. Comparisons with state-of-the-art zero-shot text-to-image
personalization methods on computational resources, including
GPUs, the number of training iterations, and the size of training
datasets. The minimum requirements are highlighted in bold.

test them on other architectures. The unseen models can
still generate reasonable and visually appealing results.
More Designs for Better Cross-Model Generalization:
As analyzed in the main paper, the key idea to achieve
model-agnostic personalized text-to-image generalization is
to explore shared properties across different architectures.
The final choice of this paper is the shared square mappings
for key and value transformation in cross-attention layers.
In fact, we have also attempted other designs, like using
timestep-dependent subject representations or introducing
more architectures during the training time. Although the
results are also encouraging, as shown in Figs. 13 and 14,
we find these designs result in more complex pipelines in
either inference or training time, requiring more computa-
tional resources. By contrast, the shared and square key and
value mappings presented in this paper offer an overall more
elegant and simple-yet-effective solution.

D. Limitations and Future Works
Future works related to the UniversalBooth proposed in this
work may explore other useful common properties of vari-
ous diffusion models or devise other regularizations to en-
hance the cross-model generalization performance. Fur-
thermore, the generalization capability of our approach
hinges on the assumption of utilizing the same text en-
coder, such as the CLIP text encoder. We anticipate that
future research will aim to relax this constraint, thereby en-
abling personalized text-to-image generation to be appli-
cable across a broader range of models with diverse tex-
tual spaces. The possible negative social impact caused
by AIGC models used in this work could be potentially
avoided by using specific detection methods.
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Figure 15. More ablation studies. In general, shared and square key and value mappings are the key for cross-architecture inference
compared with without using additional key and value mappings or only using square mappings. Hierarchical cross-attention results in
a better trade-off between text adherence and appearance preservation, and optimal transport prior helps produce more reasonable image
layouts.


