Video Motion Graphs

Supplementary Material

This supplemental document contains five sections:

¢ Video and Codes (Section A).

* Importance of Non-linear Blending (Section B).

* Implementation Details (Section C).

* Rule-based Searching (Section D).

* Baseline Settings (Section E).

¢ Evaluation Metrics (Section F).

» Ablation study of CLIP and Reference Net (Section G).

A. Video and Codes

We provide a comprehensive video and separate videos to
demonstrate the performance of our system, including:

* General results for dance, gesture, and action-to-motion
generation.

» Additional applications, including real-time multiple mo-
tion generation, keyframe editing and replacement.

* Comparison of different Video Frame Interpolation (VFI)
methods.

¢ Evaluation of the effectiveness of the Motion Diffusion
Model (MDM).

¢ Evaluation of the effectiveness of the Reference Decoder.

The anonymous scripts including the Video Motion
Graph system, the system first uses Poselnterp for motion
interpolation and then employs HMInterp for video frame
interpolation.

B. Importance of Non-linear Blending

Linear blending in prior works such as GVR [69] and
TANGO [33], offers a straightforward approach to guid-
ing motion interpolation. While effective for simple motion
scenarios like talk shows, it struggles with complex and dy-
namic motions, such as dance. This limitation underscores
the need for non-linear blending techniques to achieve re-
alistic motion generation. To illustrate this, we analyze the
differences between linearly blended motion and ground-
truth motion using sequences from Show-Oliver [63] and
Champ-dance [70]. By setting a fixed threshold (e.g.,
0.001) to measure deviations, we observe a clear discrep-
ancy between linear blending and the ground truth, particu-
larly for complex motions. Specifically, 78% of the samples
from Show-Olive falls below the threshold, indicating that
linear blending suffices for most cases in this dataset. How-
ever, only 17% of the samples from Champ-dance is in the
same threshold, highlighting that linear blending is unsuit-
able for high-dynamics motions.

C. Implementation Details

We initialize our VFI model using the pretrained weights
from Stable Diffusion 1.5 [46] for spatial layers and An-
imateDiff [14] for temporal layers. All the training be-
gins with a learning rate of 1 x 107°. The VFI model
(both spatial and temporal layers) is initially trained with-
out motion guidance at a resolution of 256 x 256 on Nvidia
H100 GPUs. This training is conducted for 100K itera-
tions. Next, we train the VFI model with pose guidance,
keeping the weights of the image guider fixed, at a resolu-
tion of 512 x 512 for 8K iterations. The reference decoder
is trained separately for 100K iterations. The Motion Dif-
fusion Model (MDM) is trained on Nvidia A100 GPU for
120K iterations. We retrain all baseline models with our
mixed dataset including MotionX, TED and Champ dataset.
Our HMInterp has similar inference speed and memory cost
with AnimateAnyone (50.7s vs. 48.1s, 39.2G vs. 37.5G for
768%x768 14-frame videos on A100 40G).

D. Rule-based Searching

Our system could support motion retrieval for diverse sce-
narios by introducing task-specific rules. We implement
three types of conditions in this paper: Music2Dance,
Action2Motion, and Speech2Gesture. These rules-based
searches demonstrate the system’s ability to align generated
motions with the different conditions. We define the path
cost functions as task-specific CLIP-like feature distance,
e.g., CLIP-like joint embedding in MotionClip for text[53],
ChoreoMaster [8] for music, TANGO for speech audio [33].
Once the graph and path costs are defined, path searching
can be performed using dynamic programming (DP) for of-
fline processing or with efficient Beam Search [52] for real-
time applications. More details on task definitions and task-
specific cost designs are provided in the following para-
graphs. In addition, we introduce node-level path searching
using shortest path algorithms on weighted graphs. Given
the target sequence with K keyframes, we separately search
the discontinuous region with the Dijkstra algorithm [54],
using a length scale factor D, which allows the target clip
to be (1 — D) times the length of the target, and then re-
interpolate the searched path to the target length.

Music2Dance For Music2Dance retrieval, we focus on
beat matching to synchronize dance motions with the
rhythm of the music. Inspired by AIST++ [27], we detect
beat points in dance motion by computing local minima in
motion velocity and extracting beat information from mu-
sic. Besides, in the reference video, both motion and mu-



sic BEAT points are evenly distributed. In addition to beat
score, similar to Choreomaster [8], we introduce a structural
penalty term. This term penalizes repeated motion patterns
excessively. We also adopt the CLIP-like feature distance
trained from joint embedding in Choreomaster for music-
motion content matching.

Action2Motion For Action2Motion retrieval, we employ
a combination of keyword matching and action segmen-
tation to retrieve motions effectively for specific actions.
Videos containing multiple actions are first segmented into
smaller segments based on action segmentation. Each seg-
ment is then tagged with either unsupervised labels (e.g.,
Action A, B, C) or manually assigned labels (e.g., sitting,
walking). During retrieval, each motion segment is assigned
two labels: a global action tag and a local ordering tag. The
system first matches the global action type and then selects
frames from the closest matching local order, ensuring tem-
poral coherence across action segments. For Text2motion,
we adopt the CLIP-like feature distance from MotionCLIP.

Speech2Gesture For Speech2Gesture retrieval, we adopt
a latent-space-based approach inspired by TANGO [33].
We use the pretrained weights from TANGO to calculate
the audio-motion difference in latent-space features to de-
termine the optimal path. We minimize the global audio-
motion distance using Dynamic Programming (DP). After
retrieval and sampling, we adopt a lip-sync model [42] to
post-processing the output. This alignment not only im-
proves visual coherence but also enhances the emotional
expressiveness of the generated gestures.

E. Baseline Settings

For comparison with previous fully generative human mo-
tion video systems, we select state-of-the-art generation
methods for various sub-tasks. Specifically, we compare
against DanceAnyBEAT [55] for dance generation, S2G-
Diffusion [15] for gesture generation, and Text2Performer
[23] for action-to-motion generation. DanceAnyBEAT is a
video diffusion model that incorporates audio features via
cross-attention and integrates text features into the UNet ar-
chitecture. S2G-Diffusion is an end-to-end diffusion model
designed to generate co-speech gesture videos directly from
speech input. Text2Performer generates human motion
videos based on action descriptions. For the evaluation, we
compare the demo videos available in their repositories with
our results through a user study.

F. Evaluation Metrics

We use both pixel-level and feature-level evaluations to
evaluate the quality of the generated videos. The metrics are
Peak Signal-to-Noise Ratio (PSNR), MOtion-based Video

Integrity Evaluation (MOVIE) [47], Learned Perceptual Im-
age Patch Similarity (LPIPS) [67], and Fréchet Video Dis-
tance (FVD) [51].

Peak Signal-to-Noise Ratio (PSNR) PSNR measures
how similar the generated frames are to the ground truth
frames at the pixel level. It is based on the mean squared
error (MSE) and is expressed in decibels. Higher PSNR
values mean less reconstruction error. The formula is:
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Here, MAX is the maximum possible pixel value (e.g.,
255 for 8-bit images), and MSE is the average squared dif-

ference between the original and generated frames.

MOtion-based Video Integrity Evaluation (MOVIE)
MOVIE evaluates both spatial and temporal differences in
video frames to evaluate the video quality. It assesses how
well frames are interpolated and how smooth the transitions
are. The formula for MOVIE is:
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Here, v1 and v, represent the ground truth and generated
video frames, respectively, and N is the total number of
frames. Lower MOVIE values indicate better video quality.

MOVIE =

Learned Perceptual Image Patch Similarity (LPIPS)
LPIPS measures how similar two images look in terms of
features learned by a neural network. It focuses on percep-
tual quality rather than just pixel accuracy. The formula is:
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Here, x and y are the generated and reference images,
¢; is the feature map from the /-th layer of a pre-trained
network, and w; is a weight for that layer. Smaller LPIPS
scores mean better perceptual similarity. We adopt the pre-
trained VGG [50] in Pytorch LPIPS as the feature extractor.

Fréchet Video Distance (FVD) FVD measures how sim-
ilar the real and generated videos are in a feature space. It
considers both the average features and their variability over
time. The formula is:
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Here, p, and py are the means of the features for real
and generated videos, and X, and X, are their covariances.
Lower FVD values indicate better realism and smoother
motion in the generated videos. We adopt the pretrained
13D [3] network as the feature extractor.

G. Ablation study of CLIP and Reference Net

Table 7. Objective Comparison of CLIP and Reference Net.
Without ReferenceNet and CLIP image encoder, the results per-
form worse on all objective scores

Method PSNRT LPIPS| MOVIE| FVD]
HMlnterp (s = 1) 39.53 0.034 39.18 1.210
w/o CLIP 34.07 0.069 65.47 1.588
w/o Reference Net 32.68 0.110 78.19 2.098

We show that CLIP and Reference Net is necessary to
minimize low-level artifacts, as shown in the Table and
Figure, removing CLIP weakens denoising, causing noisier
videos, while removing Reference Net results in blurriness.

w/o CLIP (noisy) w/o Reference Net (blurry) Proposed GT

Figure 10. Subjective Comparison of CLIP and Reference Net.
We remove the CLIP and ReferneceNet on our (denoted as pro-
posed) method. Results show that removing CLIP weakens denos-
ing, and removing Reference Net results in clearly blurriness.
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