When Confidence Fails: Revisiting Pseudo-Label Selection in
Semi-supervised Semantic Segmentation

Supplementary Material

A. Overview

In the supplementary material for CSL, we provide a proof
of Eq. (8) (Sec.B), give a low-complexity implementation
of CSL and pseudo-code (Sec.C), extend the implementa-
tion details and experimental comparison (Sec.D), supple-
ments the analysis of residual dispersion(Sec.E), discuss the
potential limitations (Sec.F), and gives more visual results
(Sec.G).

B. Proof of Equation 8

For the pseudo-label selection problem in semi-supervised
semantic segmentation, it can be formulated as:

msz}XTr (STCDT(I)S) ,s.t.8 € {0, 1} IW>2

where S is the binary selection matrix subjectto ) S, . =
1 with ¢ € {1, 2} indicating class indices, and 7'r(-) denotes
the matrix trace. Each column of ® = [hy, ho,...,hgw]
represents the feature h,, € R? of pixel n.

Proof.  Without loss of generality, the essential goal of
pseudo-label selection is to assign pixel classes via S such
that the selected pseudo-labels are optimal under a certain
metric:

HW
L(S) == Z "2 (Zn, Sn,:) )
n=1

where (-, -) is a function that measures the potential risk of
assigning pixel n to a specific class , with z,, representing
the pixel’s feature. Considering the potential natural sep-
aration exhibited in Fig. 1, we employ intra-class consis-
tency as the metric, which measures the distance between
the pixel feature vector z,, = h,, and the mean feature vec-
tor . of its assigned class ¢, which can be expressed as

2
¢ (Zn; Sn,:) = Z Shsellhn(c) = pell?,
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thus £(.5) can be reformulated as
L(S) =@~ S(S"S)"'sTe||%,
let P = S(STS)~1ST, the £(S) simplifies to
L(S) = — PO
Using the Frobenius norm identity

L(S) = @[ — 2Tx(2"P®) + | P2 F,

since P? = P (idempotence of projection matrices), thus
L(S) = ||2[[F - Te(2"P®).

Minimizing £(S) is equivalent to maximizing Tr(®7P®).
Substituting P:

Tr(®TP®) = Tr(®7 S(STS)1STd),

for binary classification, STS = diag(ny,ns2), where n;
and ns are the number of pixels in each class. Thus:

Tr(®TPP) = Tr(STdBTS) - (n7* +nyt),
ignoring the normalization constant, this reduces to:

max Tr(STo7®S).

C. Algorithm

C.1. Low-complexity Implementation of Prediction
Convex Optimization Separation

In Eq. (9), we used the eigenvectors u; of ®7®. how-
ever, obtaining u; through ®7® is computationally expen-
sive, especially when ® € R2*H#W hag a large number of
columns, where HW > 2. so we provide an efficient alter-
native with Singular Value Decomposition (SVD).

The SVD of & is given by:

o =UxVT,

where U € R?*2 and V € REWXHW gre orthogonal ma-
trix, & € R2*HW j5 a diagonal matrix containing the sin-
gular values o;.

Substituting the SVD of &,

7o = (UzvhHT(uxvT),
which simplifies to
oTe = veIuTuzv?,
Using the orthogonality of U (UTU = I),
T =veTevT,

Let A = TS = diag(0?, 03), where o2 are the squared
singular values. Then

dTd = VAV,



This shows that V contains the eigenvectors of dTH, A
contains the eigenvalues of ®7 .

Computing the eigenvectors of ®7® via direct eigen-
decomposition requires explicitly forming ®7'®, which has
a cost of O(HW?) for matrix multiplication and O(HW?3)
for eigen-decomposition. In contrast, computing the SVD
of @ has a cost of O(HW?).

C.2. Pseudocode for Optimization Separation

Algorithm 1 provides the pseudocode for Prediction Con-
vex Optimization Separation. Using a convex optimization
strategy based on confidence distribution, CSL effectively
excludes a large number of high-confidence false predic-
tions in pseudo-label selection to improve the performance
in semi-supervised semantic segmentation tasks.

Algorithm 1 Pseudocode of Prediction Convex Optimiza-
tion Separation in a PyTorch-like style.

# pmax: Pixel-level maximum confidence
# vn: Pixel-level residual dispersion

def PCOS (pmax, vn):
# combine pmax and vn into a feature matrix @
® = stack([pmax, vn], axis=1).T
# extract the top two eigenvectors from &
U, Sigma, VT = svd(®)
eig.vectors = VT[:, :2]
# constructing the optimal selection matrix
S = argmax (abs (eig_vectors), axis=1)
# calculate stats for each class
stats = [(P[S == c].mean(dim=1),
P[S == c].std(dim=1)) for c in range(2)]
# select the reliable class
mu, sigma = max(stats, key=lambda x:x[0]
# smooth loss weight
weight = exp (- ((®P-mu)/ (8xsigma)) x*2)
weight = weight.prod(dim=0)
# preserving reliable prediction weights
weight [(®[0, :1>mul[0])|(P[1, :1>mu[l])] =1
return weight

C.3. Pseudocode for Trusted Mask Perturbation

In Sec. 3.4 of our paper, we propose the Trusted Mask Per-
turbation Strategy. The core idea of this method is to en-
hance the mutual information between low-confidence re-
gions and pseudo-labels to strengthen the fitting of these
regions. Specifically, we use high-confidence predictions
from weakly augmented outputs as pseudo-labels but ran-
domly discard their image content, while the image content
of low-confidence predictions is entirely preserved. This
forces the network to infer the classes of high-confidence
regions based on the image content of low-confidence re-
gions, thereby compensating for the underfitting in low-
confidence areas. To clarify things, we present the pseu-
docode of the threshold updating strategy in a PyTorch-like
style.

Algorithm 2 Pseudocode of Trusted Mask Perturbation in
a PyTorch-like style.

# x_w: Image with weak augmentation perturbation
# image_size: The length or width of the image
# block_size: The masking patch size

# masking.rate: The masking pixel ratio

# f: segmentation network

predw = f (x-w)

mask_w = pred.w.argmax (dim=1) .detach ()

# compute weights using PCOS on the projection
weight = PCOS(Projection (pred.w))

# create a reliability mask

relimask = (weight == 1)

# gain patch-based perturbation mask (Egq. (12))

mask_size = img.size // block.size

cover_mask = (rand(mask_size, mask_size) <
masking.-rate) .float ()

covermask = interpolate (cover_mask,

size=img.size, mode='nearest’)
# perturbation only for reliable predictions
covermask = coveramask & reli.mask
# constructing perturbed images
xm = x.s.clone ()
xm[covermask == 1] = 0
predm = f (x_m)
# calculated loss
criterion = CrossEntropyLoss ()
lossm = criterion(pred.m, mask.-w)

D. Extensive Experiment Details and Results

D.1. More Implementation Details

Following prior works [34, 69] , we employ random scaling
between [0.5, 2.0], cropping, and flipping as weak augmen-
tations. We combine ColorJitter, random grayscale, Gaus-
sian blur, and CutMix [71] for strong augmentations. Weak
augmentations and a modified strong augmentation (with-
out random grayscale and Gaussian blur) are applied be-
fore Trusted Mask Perturbation. Additionally, we incorpo-
rate 50% random channel dropout as feature perturbations
to encourage robust feature representations as in previous
works [50, 51, 69] . For computational efficiency, mixed-
precision training based on BrainFloat16 is utilized.

D.2. More Experimental Results

Different loss weights. In Tab. 7, we investigate the impact
of different loss weightings on segmentation accuracy. The
imbalance between consistency loss and masking loss sig-
nificantly affects model performance. Moreover, assigning
excessively high or low loss weights to the unlabeled data
also leads to a degradation in performance. The results indi-
cate that the optimal performance is achieved when [A1, As]
are set to [0.5, 0.5].

A:We conducted experiments comparing threshold-based
methods and CSL on identical model predictions. As shown
in Tab. 9, CSL achieves consistent accuracy improvements
(+4.1%), while maintaining competitive recall (+1.0%).



A1 A2 ‘ 1/16(92) 1/8(183) 1/2(732) dataset ‘ 92 183 366 732 1464
0.50 0.50 76.8 79.6 80.9 D 73.2 77.1 78.8 79.4 80.3
0.75 0.25 75.6 78.1 79.7 D, 76.8 79.6 80.3 80.9 82.3
0.25 0.75 75.2 77.6 79.2 D,uD, | 75.6 78.4 79.6 80.1 81.7
0.30 0.30 76.3 79.1 80.2
0.70 0,70 75.7 78.4 79.8 Table 10. Ablation study of masking datasets under 1/2 splits. For
1.00 1.00 72.5 76.6 717.6 the labeled dataset, predictions are treated as reliable predictions.

Table 7. Impact of different loss weights, evaluated on the original
PASCAL VOC 2012 with a crop size of 321.

Method | 116 1/8  1/4 1/2  Full

CSL 76.8 79.6 803 809 823
Class-specific CSL | 74.6 783 79.1 79.7 80.6

Method 1/8 172
A¥ only 78.3 79.1
AY&A® 78.7 79.5
A¥& A® W/O Cutmix 79.1 79.8
A“& A® W/O grayscale 79.0 80.4

A¥& A® W/O (Cutmix & grayscale) | 79.6 80.9

Table 8. Comparison of CSL and class-specific strategy, evaluated
on the original PASCAL VOC 2012 with a crop size of 321.

Metrics plane bicyc bus car chair perso sofa | mean
Sampling| 1962 93.1 98.0 93.2 82.0 91.0 78.6| 91.0
Accuracy é 90.8 754 90.1 854 334 83.7 50.2| 824

Recall 96.6 97.6 93.2 89.5 81.8 87.5 86.7|93.6
Sampling 92.3 85.7 94.1 89.5 63.1 85.6 71.2|87.6
Accuracy 95.1 824 96.4 91.7 42.5 89.1 60.4| 86.5
Recall 97.1 98.2 95.8 92.3 80.1 87.7 94.5| 94.6

CSL

Table 9. Pseudo-Label sampling rate, accuracy and recall compar-
ison under PASCAL original 1/4 Splits with class-wise metrics.

Class-specific prediction selection. In semi-supervised se-
mantic segmentation, due to the long-tailed distribution of
datasets, the confidence distributions of predictions vary
significantly across classes. This suggests that employing
a class-specific convex optimization strategy could poten-
tially yield performance gains. To analyze this, we recon-
struct the feature matrix ® into class-specific feature spaces
for Prediction Convex Optimization Separation:

O = {hy | hn € Dk =k} (16)
where @, is Class-specific feature matrix for class k and £,
is the predicted class label for pixel n.

We conducted ablation experiments presented in Tab. 8,
where it can be observed that using class-specific schemes
results in significant performance degradation. This may be
attributed to the fact that most classes have too few pixel
samples within instances to maintain an effective convex
optimization strategy.

Augmentations of Trusted Mask Perturbations. In
Tab. 11, we evaluate the impact of various augmentations
on Trusted Mask Perturbations. Adding CutMix leads to
significant performance degradation, as it introduces mis-
leading contextual information by directly stitching image

Table 11. Comparison of augmentations strategies for TMP, eval-
uated on the original PASCAL VOC 2012 with a crop size of 321.

Method Encoder 1/16 1/8 1/4 172 full
UniMatchV2 DINOv2  79.0 855 859 86.7 878
Ours DINOv2 80.2 858 863 874 88.1
AllSpark SegFormer 76.1 78.4 79.8 80.8 82.1
Ours SegFormer 77.4 80.2 815 835 853

Table 12. Influence of different network architectures, evaluated
on the original PASCAL VOC 2012 with a crop size of 513.

patches while the trusted masking mechanism forces the
model to learn contextual relationships, resulting in nega-
tive effects. Similarly, random grayscale enhances the sam-
ple by reducing color diversity, which conflicts with the
masking mechanism and results in substantial information
loss. Therefore, we adopt enhancements that exclude Cut-
Mix and random grayscale as additional Augmentations to
the masking strategy.

Selection of Masking Datasets. To evaluate the impact of
applying the mask perturbation to different subsets: labeled
images, unlabelled images, and the combination of both,
experiments were performed under different splits, as de-
tailed in Tab. 10. Results show applying masking to labeled
data or the combination leads to progressively severe perfor-
mance degradation as the number of labeled data samples
decreases. This phenomenon can be attributed to the net-
work learning contextual relationships present only in the
labeled data instances and applying them to unlabeled data.
Different network Architectures. Considering that dif-
ferent encoders may exhibit varying degrees of overconfi-
dence in their representations and utilize contextual rela-
tionships through distinct mechanisms, we supplement ad-
ditional experiments with diverse network architectures in
Tab. 12. Specifically, DINOv2-S adopts the hyperparame-
ters from Unimatchv2 [70], while SegFormer-B5[54] shares



Up, H(p,) Hyes m, | 18 | 1/4
v 79.6 80.3
v v 77.3 78.5
v v 77.5 79.1
v v 76.9 78.2
v v v v 71.5 76.3

Table 13. Comparison of different combinations of metrics, eval-
uated on the original PASCAL VOC 2012 with a crop size of 321.

the training configuration described in Sec. 4.1. Experi-
mental results reveal that our Confidence-aware Structure
Learning (CSL) achieves consistent performance improve-
ments across architectures, demonstrating its effectiveness
as an architecture-independent framework.

E. More Analysis for residual dispersion

E.1. Why residual dispersion but not other common
metrics

The choice of residual dispersion as a reliability metric
stems from its theoretical foundation in entropy minimiza-
tion principles. As derived in Eq. (4)-Eq. (7), the cross-
entropy objective naturally decomposes into two comple-
mentary terms: the maximum confidence p,, (k") and resid-
ual dispersion v,,. This decomposition reveals an intrinsic
geometric relationship, that reliable predictions must simul-
taneously maximize confidence in the dominant class and
dispersion among residual probabilities.

Traditional metrics like entropy H (p,,) and prediction
margin m,, fail to meet this criterion. Though entropy
theoretically encourages unimodal distributions, it inadver-
tently tolerates pathological multi-peaked configurations.
Consider predictions p4 = [0.5,0.5,0,...,0] and pp =
[0.5,0.01,...,0.01]. Paradoxically, p4 exhibits lower en-
tropy despite being less reliable. This demonstrates en-
tropy inability to distinguish valid unimodal predictions
from problematic multi-modal ones.

Residual entropy Hres = — 3 ;s Pn(k)logpn(k)
avoid such problem and is ostensibly similar to the sec-
ond term in Eq. (4), but its additional linear dependence on
pnk) significantly reduces its ability to judge prediction
credibility under overconfidence.

Margin m,, = pp(k’) — maxy.p pn(k) focuses only
on the top two categories. In the case of overconfidence,
the margin is completely dominated by the maximum con-
fidence and shows no discrimination.

E.2. Why not use multiple metrics

While combining multiple metrics theoretically enhances
pseudo-label selection with negligible additional time over-
head, considering that metrics like entropy or margin are re-

peated measurements of Eq. (4), adding such redundant fea-
tures will introduce covariance conflicts that will degrade
the model performance. As shown in Tab. 13, optimal per-
formance is achieved when only maximum confidence and
residual dispersion are considered.

F. Potential Limitations

In CSL, we employ a convex optimization strategy within
the confidence distribution feature space to exclude po-
tential high-confidence erroneous pseudo-labels caused by
model overconfidence. However, we observe that when the
proportion of labeled data is extremely small, the signifi-
cant disparity in the marginal distributions between sample
sets leads to unavoidable cognitive bias. This limitation is
particularly pronounced in real-world scenarios, where such
imbalanced data splits are common. Thus, an important av-
enue for future research could involve leveraging limited la-
beled data more effectively to calibrate cognitive biases and
improve the quality of pseudo-labels.

Additionally, although the theoretical validity of resid-
ual dispersion is established under the general princi-
ples of semi-supervised semantic segmentation, given the
broad applicability of entropy minimization, this proof
can be readily extended to similar domains such as semi-
supervised classification or unsupervised domain adap-
tation.  Similarly, introducing direct confidence cali-
bration methods commonly used in other fields into
semi-supervised semantic segmentation represents another
promising technical pathway. We leave these potential ex-
tensions for future exploration.

Last but not least, CSL utilizes the masking of reli-
able regions to leverage contextual relationships, thereby
enhancing the model’s learning in low-confidence areas.
However, we find that as the interfering information sur-
rounding low-confidence regions is masked, predictions in
these areas tend to be more accurate compared to unmasked
regions. Yet, due to the potential for errors, the information
from these areas is discarded during training. Therefore,
a potential approach could be to further screen this valid
information. This could potentially complement the direct
supervision signals for low-confidence regions, fostering a
more effective learning process.

G. More Visualizations

In Fig. 8, we show that the method in this paper and other
methods More segmentation results on the PASCAL VOC
2012 dataset.
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Figure 8. More visualization of the segmentation results on the PASCAL VOC 2012 dataset on 1/8 splits with a crop size of 513.



