mmCooper: A Multi-agent Multi-stage Communication-efficient and
Collaboration-robust Cooperative Perception Framework

Supplementary Material

1. Overview

The supplementary material is organized into the following
sections:
¢ Sec. 2: The System Pipeline of mmCooper
* Sec. 3: Details of Multi-stage Fusion Method
* Sec. 4: Additional Experimental Results
— Sec. 4.1: Implementation Details
— Sec. 4.2: Supplements on Localization Errors
— Sec. 4.3: Supplements on Transmission Delays
— Sec. 4.4: Robustness to Heading Errors
— Sec. 4.5: More Ablation on V2VSet Dataset
— Sec. 4.6: Performance on V2V4Real Dataset
— Sec. 4.7: Computation Costs
— Sec. 4.8: Ablation of Deformable BBox Attention
(DBA)
— Sec. 4.9: Impact of Varying the Number of Agents
¢ Sec. 5: Additional Qualitative Evaluation Results
— Sec. 5.1: Visualization of Detection Result
— Sec. 5.2: Visualization of Multi-stage Fusion

2. The System Pipeline of mmCooper

The proposed system pipeline of mmCooper is illustrated
in Algorithm 1. Note that the following pipeline is executed
in parallel across all agents. For simplicity, we describe the
pipeline from the perspective of the ego agent. The ego
agent is represented by ¢, while the collaborative agents are
denoted by j. First, the agent generates BEV features F*
and F through the Observation Encoding. In the Informa-
tion Broadcasting, agents generate initial coarse bounding
boxes B and B/, where N} and N; represent the num-
ber of bounding boxes predicted by the ego agent and the
collaborating agents, respectively. The collaborative agents
then package and broadcast the filtered BEV features along
with the coarse bounding boxes. Specifically, faussian ()
denotes a Gaussian filter, and {13’ i B } represents the fil-
tered features and bounding boxes from the collaborative
agents.

Subsequently, in the Intermediate-stage Fusion, the ego
agent performs feature fusion using the Multi-scale Offset-
aware Attention module. The outputs from the fused fea-
tures at different scales, after undergoing upsampling, are
concatenated to obtain the final fused features. Here,
fup2(+) and fy,p3(-) denote the upsampling operations,
while {F! ., F!.,, F! ..} represent the feature fusion out-
puts at three different scales.

In the later-stage fusion, the BBox Filtering & Calibra-

tion Module is employed to learn the bounding box off-
sets and scores. Specifically, DBA refers to the Deformable
Bounding Boxes Attention Module, while FFN denotes the
feed-forward network, fen.(-) represents the feature ex-
tractor for bounding boxes, fos;(-) is the offset mapping
function, and fs.ore(+) is the score mapping function. ¢(-)
represents the filtering and calibration through scores and
offsets.

Finally, the fused features are input into a detection head
to predict the fused bounding box B, scq. The final bound-
ing box is composed of the bounding box predicted from
the fused features By,seq and the bounding box obtained
after filtering and calibration BJ_from collaborative agents.

m
fpost (+) represents the combination of all bounding boxes.

3. Details of Multi-stage Fusion Method

Note that our proposed model requires only a single round
of processing and communication, the same as other single-
stage methods. As shown in Fig. 1, both intermediate-stage
features and late-stage bboxes are handled within a sin-
gle inference cycle and jointly transmitted in one commu-
nication round. While mmCooper includes two detection
heads, they share parameters, and each head introduces only
2.71ms of processing time. Notably, mmCooper is more
efficient than ERMVP, a single-stage intermediate fusion
method, with a lower total runtime of 45.41ms compared
to ERMVP’s 55.30ms. Combined with its superior perfor-
mance, this confirms that mmCooper remains both prac-
tically feasible and system-efficient, without the overhead
suggested in the comment.
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Figure 1. Comparison of single-stage method and our method.

4. Additional Experimental Results

In this section, we provide additional experiments to supple-
ment the results on the datasets OPV2V [7], DAIR-V2X [9],
V2XSet [6] and V2V4Real [8] presented in the main paper.



Algorithm 1 System Pipeline of the Proposed mmCooper

Define N = {1,...,n} as the agent set, i € N represents the ego agent, while j € N denotes the collaborative agents. x;;
serves as the input point cloud.
# For collaborative agents.
# Observation Encoding.
for each agent j € N, do
Fj = wencoder(xj) S RCXHXW
end for
# Information Broadcasting.
for each j € N, do _
B = faec(F7) € RNoXT
C;,CZ = ¢conf (FJ)
Ojfa CZ = fgaussian (O}, CZ)
Mj M, = fuon (C3.CF)

; ; eap((logC} ,,+91)/7)
M} M) = max p( L
f,90 " byg f <Zsezp((logC§+gs)/T)
VY J
Mip =My g©Mipy
Fi= M6 P B = M) o B
broadcast { £7, B7} to other agent
end for

# For ego agent.
# Observation Encoding.
Fi= '(/}encoder(mi) S RCXHXW
# Information Broadcasting.
Bi = fdec(Fi) c RN’:X7
# Intermediate-stage Fusion.
Receive { £, B7} sent by collaborative agents.
Encode the feature set { ', F/} into three scales S = {scl, s¢2, sc3}.
For each sc € S, do
Fsic7(r7c) = C’rossAttn(MLP(Fs"c’(r’c)
end for

Fi= Concat(fzclv fup2 (‘FicQ)v fup3 (‘7:;03))
# Late-stage Fusion.

Fb(q) = fenc,b(Bj)
DBA(q) = Yy WalXny Sy @(WsFy (a) (g + D)) + Fi(q)
Fppa=FFN(Fppa) + Fppa

Off7 score = foff(FDBA)a fscore(FDBA)

l';’fn = ¢(of f, score, l";’J)

# Detection Decoders

Bfused = fdec(»/_'.z) .

B;inal = prSt (617 Bgna Bfused)

[7,8XS [],SXS
)7 Fsc,(r,c)’ Fsc,(r,c))

4.1. Implementation Details OPV2V and V2XSet. The shared bounding boxes among
agents are represented by their center coordinates, dimen-
sions (length, width, height), and heading angle. The de-
tection decoder consists of two distinct 1x1 convolutional
layers.

On the OPV2V, DAIR-V2X and V2XSet datasets, the di-
mensions of the voxels encoded by the encoder are 0.4 x
0.4 x 4. The shape of the shared BEV features among agents
is (64, 100, 252) for DAIR-V2X and (64, 100, 352) for



4.2. Supplements on Localization Errors

The localization errors on the OPV2V, DAIR-V2X and
V2XSet datasets are sampled from a Gaussian distribu-
tion with a mean of O m and a standard deviation o €
{0.0,0.1,0.2,0.3,0.4}m. The experimental results, as
shown in Fig. 2, demonstrate that our proposed mmCooper
outperforms the existing state-of-the-art methods [1, 3, 5, 6,
10] across different levels of localization error, highlighting
its robustness to such errors.

4.3. Supplements on Transmission Delays

We evaluated the performance of the models on the OPV2V,
DAIR-V2X and V2XSet datasets under transmission de-
lays for {0, 100, 200, 300,400}ms. As shown in Fig. 3,
our proposed mmCooper consistently outperforms the ex-
isting state-of-the-art methods across all transmission delay
conditions, demonstrating the superiority of our approach
in scenarios with transmission delays.

4.4. Robustness to Heading Errors.

Fig. 4 demonstrates the performance of our proposed mm-
Cooper method compared to other baseline methods un-
der varying levels (i.e., {0.0,0.2,0.4,0.6,0.8}°) of head-
ing error noise on the OPV2V, DAIR-V2X and V2XSet
datasets. As illustrated in Fig. 4, the performance of all
models decreases as the heading errors increase. However,
mmCooper consistently outperforms the current state-of-
the-art models across all error levels, highlighting the ad-
vantages of our designed Multi-Scale Offset-Aware Fusion
Module and BBox Filtering & Calibration Module in en-
hancing system robustness.

4.5. More Ablation on V2XSet Dataset

We supplement the main paper with ablation experiments
conducted on the V2XSet dataset. As shown in Tab. 1, the
results align with those presented in the main paper, demon-
strating that the absence of any key component leads to per-
formance degradation. Moreover, downgrading mmCooper
to a single-stage approach also results in decreased perfor-
mance.

4.6. Performance on V2V4Real Dataset

To further evaluate the performance of our model on more
datasets, we also report the results on the V2V4Real dataset.
Our experimental setup on the V2V4Real dataset is consis-
tent with that of the DAIR-V2X dataset. As shown in Tab. 2,
mmCooper still demonstrates outstanding performance on
the V2V4Real dataset.

4.7. Computation Costs

Tab. 3 presents the overall computation time of our model
as well as the computation time of each module. Although
both our intermediate-stage and late-stage fusion modules

Table 1. Ablation study results of different designs in mmCooper
on the V2XSet datasets. CFG: Confidence-based Filter Gen-
eration Module; MOF: Multi-scale Offset-aware Fusion; BFC:
BBox Filtering & Calibration Module; LF: Late-stage Fusion; IF:
Intermediate-stage Fusion.

AP@0.7/0.5(1)
V2XSet
65.86/84.40

Importance of Core Components
62.78/82.47
b 4 - - 64.33/84.04
b 4 - - 64.70/83.59
Results of Single-stage Fusion
- - - b 4 64.19/83.73
- - - X 54.36/72.14

Table 2. Collaborative perception performance on the V2V4Real
dataset with a time delay of 100 ms, localization errors of 0.2 m,
and heading errors of 0.2° using Average Percision(AP)@0.7/0.5
as metrics.

CFG MOF BFC | LF IF

V2V4Real

Models AP@0.7/0.5

No Fusion* [2] 24.72/43.52
Late Fusion* [2] 17.79/39.91
Intermediate Fusion* [2] | 28.77/49.19
Where2comm [1] 29.83/49.43
V2X-ViT [6] 25.08/47.85
ERMVP [10] 26.81/44.57
Ours 31.47/50.21

utilize attention-based mechanisms, due to the sparsity of
intermediate-stage features from collaborators and the spar-
sity of reference points used in deformable attention during
late-stage fusion, our model achieves inference time com-
parable to other models.

4.8. Ablation of Deformable BBox Attention (DBA)

To further demonstrate the necessity of the Deformable
BBox Attention (DBA) module, we replace it with the
standard cross-attention mechanism. As shown in Tab. 4,
due to the lack of focus on key reference points, replac-
ing DBA with standard cross-attention leads to performance
drops of 4.07%/0.07%, 0.58%/1.97%, and 1.44%/0.69% in
AP@0.7/0.5 on OPV2V, DAIR-V2X, and V2XSet respec-
tively.

4.9. Impact of Varying the Number of Agents

Fig. 5 illustrates the impact of varying the number of agents
on detection performance in the OPV2V dataset. It can
be observed that as the number of collaborating agents in-
creases, the detection performance also improves.
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Models Inference Time(ms)
Intermediate Fusion* 10.07
Where2comm [1] 17.05
V2X-ViT [6] 114.11
Select2col [4] 27.00
ERMVP [10] 55.30
Ours 45.41

Module OPVZ,V
Inference Time(ms)
Observation Encoding 12.26
Information Broadcasting 14.37
Intermediate-stage Fusion 13.54
Late-stage Fusion 4.06
mmCooper 45.41

Table 3. The left table presents the inference time of different models on the OPV2V dataset, while the right table shows the inference time

of different components in mmCooper.

Table 4. Comparison of detection performance when using DBA
or cross attention in the BBox Filtering & Calibration (BFC) mod-
ule in AP@0.7/0.5 on OPV2V, DAIR-V2X, and V2XSet respec-
tively.

Module OPV2V DAIR-V2X V2XSet
Cross Attn | 74.04/88.86 | 47.69/63.15 | 64.42/83.71
DBA 78.11/88.93 | 48.27/65.12 | 65.86/84.40

5. Additional Qualitative Evaluation Results

5.1. Visualization of Detection Result

We provide additional qualitative results on DAIR-V2X
datasets. Fig. 7 present visualizations of different road sce-
narios. Our proposed mmCooper method can detect almost
all ground truths without any false positives. The results
demonstrate that our proposed mmCooper achieves out-
standing detection performance across various scenarios.

5.2. Visualization of Multi-stage Fusion

We provide more visualizations for multi-stage fusion in
different scenarios. As shown in the Fig. 6, our mmCooper
effectively performs dynamic allocation of intermediate-
stage features and late-stage bounding boxes across dif-
ferent scenarios while also refining the received bounding
boxes.
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Figure 6. Visualization of two-stage fusion on DAIR-V2X. We show the results from the Confidence-based Filtering Generation Module,
including discarded information (white background), BBoxes for transmission (red dots), and features for transmission (yellow back-

ground). We also show the BFC module results, including uncalibrated BBoxes (blue boxes), calibrated BBoxes (red boxes), and ground
truth BBoxes (green boxes). 6



(a) Where2comm (b) V2X-ViT (c) ERMVP (d) Ours

Figure 7. More visualization comparison of detection results on the DAIR-V2X dataset. Green and red boxes represent the ground truth
and the model-predicted bounding boxes, respectively.
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