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1. The Hessian trace at Loss Maxima

Given that the loss function £(z) is second-order differen-
tiable. If 2* is a local maximum point, then for sufficiently
small perturbations v we have

Lx* +v) < L(z"). (1)

Using Taylor expansion (ignoring higher-order terms),
we have

L(z* +v) ~ L(z*) + 30" H(z*)v, (2)

where H(x) = V,;V,L (z) denote the Hessian matrix of
L(x) with respect to x.

Therefore, for all sufficiently small perturbations v, we
must have

tr (H(z*)) = E, ["H (z*) v] <0. 3)

Further, consider £(z) is Lipschitz continuous, which
means that its Hessian matrix 7 (x) is continuous with re-
spect to z. Let F(z) = tr(H(z)), then F(z) is also a
continuous function. It is known that at the local maximum
point x*,

Fx) <0. 4)

By the definition of continuity, there exists a neighbor-

hood B. for this point, where € is the radius. Such that when
|z — 2| <€),

[Fx) = F(07)] < (5)

since F(z*) < 0 (so |F(x*)| > 0), we set e = |F(z*)| and
get:
[F(2) = Fa)] < |F (@) (6)
thus ensuring that
F(x) <0.

Therefore, we theoretically prove that points near the lo-
cal maximum z* also satisfy the Hessian trace to be nega-
tive.

* Corresponding author.
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Figure 1. As adversarial examples approach the maximum loss,
their Hessian traces remain consistently negative and gradually de-
crease, aligning with our theoretical analysis.

Adversarial examples are expected to converge toward
the local loss maxima. We empirically observe that in the it-
erative optimization process of adversarial examples toward
loss maxima, the trace of the total Hessian in the neighbor-
hood near adversarial is consistently negative, as shown in
Figure 1. It is evident that the Hessian trace of the adver-
sarial sample generated by the MI method decreases at a
faster rate, suggesting that it converges to a sharp maxima.
In contrast, while the Hessian trace of the adversarial ex-
amples generated by our NHTR method remains negative,
it does not exhibit a sharp decline, indicating that these ex-
amples reside in a flat region.

2. Additional Experiments
2.1. Black-box Attacks on the CIFAR-10

We compare the attacking performance of the proposed
Negative Hessian Trace Regularization (NHTR) with state-
of-the-art (SOTA) attacking methods on the CIFAR-10
dataset. We consider normally trained models, including
VGG-16 (VGG) [4], Inception-v3 (Inc-v3) [5], ResNet-50
(Res-50) [1], MobileNet (Mobile) [3], and Densenet [2] as



Attack Res-18= Res-50=
Res-50 VGG Inc-v3  Mobile Densenet Avg. ‘ Res-18 VGG Inc-v3  Mobile Densenet Avg.
MI 65.9 60.9 57.7 61.8 60.7 61.4 66.4 63.2 66.6 69.9 71.2 67.5
NI 60.1 56.3 51.2 56.5 549 55.8 58.2 57.3 60.4 66.1 65.0 61.4
PI 67.8 68.7 62.8 69.4 65.1 66.8 64.4 62.3 66.8 70.9 68.8 66.6
VMI 80.1 774 74.0 76.5 77.5 77.1 64.7 66.3 70.3 73.8 69.9 69.0
VNI 69.7 70.6 64.4 69.7 68.9 68.7 71.5 71.5 78.0 81.9 81.1 79.2
EMI 81.8 86.3 79.5 83.1 80.8 823 79.4 82.0 83.0 87.8 82.7 83.0
RAP 78.8 81.5 76.1 80.3 78.5 79.0 69.2 72.5 73.8 79.8 75.6 74.2
PGN 84.3 89.7 84.3 88.1 87.3 86.7 88.1 90.2 89.4 94.7 90.0 90.5
NHTR 89.5 93.9 88.8 93.1 91.8 91.4 90.2 934 93.0 96.6 92.8 93.2

Table 1. The black-box attack success rates (%) of various gradient optimization methods with Res-18 and Res-50 as surrogate models.

The dataset is CIFAR-10.
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Figure 2. Ablation study. (a-c) illustrate the impact of the hyper-parameters on the transferability of adversarial examples: the discretization
step size h, the number of samples /N from neighborhood of adversarial examples, and the maximum perturbation e.

black-box target models and select ResNet-18 (Res-18) as
the surrogate model. The maximum perturbation e is set to
8/255, the number T of iterations to 10, and the step size to
« = ¢/T. The results presented in Table | clearly indicate
that the proposed NHTR enhances attack transferability on
the CIFAR-10 dataset. For example, when using the Res-
18 model as the surrogate model, NHTR achieves an attack
success rate of 93.9% on VGG, which is 16.5% higher than
that of VMI and 33% higher than MI. This demonstrates
the strong applicability of NHTR across various datasets
and supports the notion that adversarial examples situated
in flat local regions tend to exhibit improved transferability
across diverse models.

2.2. Additional Ablation Study

1. The discretization step size h. We approximate the
Hessian trace based on the finite differences. h denotes
the discretization step size. We examine the impact of h
on the transferability of adversarial examples and report

attack success rates as h increases. As shown in Figure
2 (a), attack success rates peak atr = 2 - a.

. The sampling numbers N. We investigate the im-

pact of the sampling number N from the neighborhood
around adversarial examples on transferability. We in-
crease N from 5 to 25. The results are shown in Fig-
ure 2 (b). We observe that as the sampling number N
increases from 5 to 20, the attack success rates rise sig-
nificantly, from 20 to 25, the success rates exhibit only
minor fluctuations. To strike a balance between transfer-
ability and computational overhead, we set [N = 20.

. The maximum perturbation . The impact of perturba-

tion magnitude € on the attack success rates of the pro-
posed NHTR is illustrated in Figure 2 (c). We observe
that a larger perturbation results in higher attack success
rates. To balance the success rates of attacks and the im-
perceptibility of adversarial examples, we finally set the
perturbation size to 16/255 in our experiments.



2.3. Attack Multi-modal Large Language Model

To further demonstrate the effectiveness of adversarial ex-
amples generated by NHTR, we conducted experiments tar-
geting large visual-language models, specifically ChatGPT.
Using ViT-B as the surrogate model and same settings in the
experiment, we crafted adversarial examples that impacted
the model. As illustrated in Figure 3, ChatGPT erroneously
identified the number of birds in the image as five.
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Figure 3. The performance of adversarial examples generated by
NHTR misleading ChatGPT.

3. Core Code

We provide the core implementation of the Negative Hes-
sian Trace Regularization method, developed using the Py-
Torch library, as shown in Figure 4.

def calculate_gradient(self, data, delta, label):

g=
for

rch.zeros_like(delta) .uniforn_(-self.xi, #args: self.xi).to(self.device)

ar)
Togit, label)

et_ce_loss(logits, label)
delta)

nt
9 N _ + (1-self._delta)/2 * (g_up + g_down)]
return g / self.num_neighbor

Figure 4. The core code of NHTR.
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