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Supplementary Material

In the manuscript, we detail the proposed PGA attack
framework and provide a wealth of experimental results. In
the supplementary materials, we add more details and re-
sults, specifically including:
• We introduce the detailed hyper-parameter settings for

PGA.
• We show that PGA can be extended to perform object

detection attacks in infrared scenarios.
• We demonstrate that PGA can attack objects other than

vehicles in autonomous driving scenarios, proving its
ability to model and attack arbitrary objects and expos-
ing the vulnerability of DNNs in autonomous driving.

• We present more ablation study results for comprehensive
understanding.

• We provide additional qualitative and quantitative com-
parisons of PGA with other SOTA methods under full-
coverage camouflage settings.

• We present the comparison of visualization results under
the setting of targeted attacks.

• We provide additional visualization results of PGA at-
tacks using photos captured from real-world scenes as in-
put, aimed at generating adversarial T-shirts that prevent
object detectors from recognizing pedestrians.

• We supplement visualization comparisons in cloudy sce-
narios within the digital domain.

1. Detailed Settings for PGA
The proposed PGA is implemented based on the C&W at-
tack framework [2], which uses a hyper-parameter λ to bal-
ance the trade-off relationship between adversarial strength
and imperceptibility. In our method, the hyper-parameter
λ is manually set to 0.1. The impact of different λ values
on attack performance and visualization results is demon-
strated in the ablation experiments in the next section. In
PGA, our primary objective is to iteratively update the zero-
order spherical harmonics coefficients of the 3D Gaussians
⟨k⟩0. Concretely, we use the Adam optimizer [4] to opti-
mize ⟨k⟩0, with the learning rate η set to a default value
of 0.005. For the reconstruction component in PGA, we
sample 200–300 images of the target object from differ-
ent viewpoints (conveniently extracted continuously from
a video), covering various shooting distances, pitch angles,
and azimuth angles. The reconstruction follows the param-
eter settings in SuGaR [3]. For the min-max optimization
framework, as described in the main text, we add pixel-level
noise to the background to maximize the loss and iteratively
optimize the noise. Specifically, we perform 10 iterations

Figure 1. Visualization of clean samples and multi-view PGA ad-
versarial camouflage results in infrared modality.

Figure 2. Visualization of clean samples and multi-view PGA
adversarial camouflage results for three common objects in au-
tonomous driving scenarios.

during the maximization process, with the total perturba-
tion budget ϵ set to 0.001 and the step size α for each attack
step set to 0.0002. The overall noise perturbation magni-
tude is deliberately kept small to avoid excessive difficulty
that could hinder the optimization of the camouflage. For
the minimization process, we perform 20 iterations to en-
sure better optimization convergence. For the overall PGA
attack, we use 100 epochs to optimize the final adversarial
camouflage.

Implementation Details. We implement our framework
and reproduce all the DNN models with PyTorch, and report
the results on a workstation with an Intel Xeon Gold 6226R
CPU@2.90Hz and 64GB of memory using a single RTX
3090 GPU.

2. Infrared Detector Attack.

In recent studies, target detection in the infrared modality
has been widely applied, typically for monitoring critical



Table 1. Comparison results of AP@0.5 (%) for clean samples
and those with PGA adversarial camouflages, demonstrating the
effectiveness of PGA attacks on three types of objects commonly
encountered in autonomous driving scenarios.

Object Method AP@0.5(%)

Faster RCNN YOLO-v5* Mask RCNN* Average

Person ORI 100.00 100.00 100.00 100.00
PGA(Ours) 12.65 81.02 19.62 37.76

Fire Hydrant ORI 67.08 93.67 85.44 82.06
PGA(Ours) 0.00 56.96 5.69 20.88

Bench ORI 68.29 75.94 72.13 72.12
PGA(Ours) 0.00 24.05 5.20 9.75

areas and facilities under low-light or nighttime conditions
using infrared cameras, as well as for providing auxiliary
decision-making in autonomous driving, among other ap-
plications. Therefore, investigating the robustness of object
detectors in the infrared modality is of significant impor-
tance. Since PGA employs 3DGS for scene modeling, it
can directly utilize multi-view images captured by infrared
cameras to quickly and accurately model and render scenes,
enabling it to generate adversarial camouflage tailored for
the infrared modality. To validate the effectiveness of PGA
under the infrared modality, we use a drone equipped with
an infrared lens to capture multi-view images of a real ve-
hicle, reconstruct the 3D infrared scene, and conduct the
PGA attack. Unlike visible light modality attacks, we apply
a unidirectional adversarial perturbation by lowering the lo-
cal temperature of the target object, resulting in darker ar-
eas in infrared imaging. This approach allows for practical
deployment by affixing aerogel at corresponding positions.
The attack results, shown in Fig. 1, confirm the feasibility
of PGA under the infrared modality.

3. Attack Common Objects in Autonomous
Driving Scenarios.

Considering that autonomous driving scenarios demand the
highest safety, we select three common street objects: fire
hydrants, pedestrians, and benches, to reveal the vulnera-
bility of DNNs. Following the experimental settings in the
main text, we place these objects in the CARLA simula-
tor, capture about 200 images from multiple viewpoints, and
feed them into the PGA physical attack framework. Within
PGA, we perform fast, photo-realistic 3DGS modeling for
each object, followed by adversarial camouflage generation.
The results in Tab 1 demonstrate that the camouflage gen-
erated by PGA successfully attacks these objects, signifi-
cantly reducing AP@0.5(%), thereby proving PGA’s high
applicability in AD scenarios and its effectiveness in attack-
ing arbitrary objects. Visualization results for the three ob-
jects are shown in Fig. 2.

Figure 3. Visualization comparison of whether the cross-view
camouflage consistency techniques described in Section 4.2.1 are
applied. It is obvious that the camouflage below shows significant
inconsistencies across viewpoints.

4. Supplement to Ablation Study

In this subsection, we conduct ablation experiments on key
hyper-parameters of the PGA attack framework, including
the learning rate of the spherical harmonics coefficients op-
timizer, the weight of the imperceptibility regularization
term λ, and the perturbation budget upper limit ϵ in the
min-max optimization. Quantitative comparison results are
provided for each in Tab. 2, Tab. 3 and Tab. 4 respectively.
Parameters marked with an asterisk in the table indicate the
default values used in the main text.

Additionally, we compare the visualization results of
PGA attacks with and without the techniques described in
Section 4.2.1 of the main text, as shown in Fig. 3. It is ob-
vious that the camouflage without the techniques in Section
4.2.1 exhibits significant inconsistencies when viewpoints
change, leading to challenges in physical-world deployment
and sub-optimal adversarial effectiveness and robustness.

Moreover, as mentioned in the main text, we employ a
common technique in the physical attack domain: Expecta-
tion over Transformation (EoT) [1]. Our findings indicate
that using EoT can slightly enhance PGA’s adversarial per-
formance and multi-view robustness. Ablation experiments
show that incorporating EoT reduces the AP@50 on Faster
R-CNN from 5.48 to 3.57.

5. Comparison under Full-Coverage Settings

We compare the digital attack performance of PGA with
SOTA methods (including FCA [7], DTA [5], ACTIVE [6]
and RAUCA [8]) across multiple weather conditions, dis-
tances, and viewpoints under the full-coverage camouflage
setting. The results in Tab. 5 show that PGA achieves the
best attack performance with full-coverage camouflage, in-



Table 2. Ablation experiments on different learning rate η values
in PGA. This table provides comparison results of AP@0.5(%)
for detection results, averaged across different distances and view
angles.

η Faster-RCNN Yolo-v5* Mask-RCNN*

0.0001 9.89 55.27 23.75
0.0005 12.80 59.78 29.35
0.001 5.55 54.73 19.40

0.005* 2.53 52.55 18.07
0.01 4.16 52.63 18.23
0.05 11.36 56.36 31.72

Table 3. Ablation experiments on different λ values in PGA. This
table provides comparison results of AP@0.5(%) for detection re-
sults, averaged across different distances and view angles.

λ Faster-RCNN Yolo-v5* Mask-RCNN*

0.001 3.26 52.78 16.09
0.01 5.83 52.24 25.87
0.1* 2.53 52.55 18.07

1 87.97 90.14 90.39
10 88.81 90.52 90.96

Table 4. Ablation experiments on different ϵ values in PGA. This
table provides comparison results of AP@0.5(%) for detection re-
sults, averaged across different distances and view angles.

ϵ Faster-RCNN Yolo-v5* Mask-RCNN*

0.0001 2.98 54.18 22.88
0.0005 2.53 52.48 18.79
0.001* 2.53 52.55 18.07
0.005 3.64 53.22 18.08
0.01 4.36 54.15 18.68

dicating that the generated adversarial camouflage exhibits
high adversarial strength, high multi-view robustness, and
high transferability. For visualization results, please refer to
Fig. 4.

6. Performance of Targeted Attack
In the physical world, compared to untargeted attacks, tar-
geted attacks pose a more severe threat, as deliberately fal-
sifying detection results can lead to more significant safety
issues. Our PGA attack framework can be easily extended
to targeted attacks by simply replacing the detection loss
with a targeted attack version. Concretely, the optimization
objective of reducing the confidence of the original class is
replaced to increase the confidence of the target class. In
Figure 5, we present the visualization results of the targeted
attack version of PGA before and after the attack. Three
target classes are set: person, truck, and broccoli. The vi-
sualization demonstrates that the PGA attack can generate

multi-view robust targeted adversarial camouflage.

7. Supplement to Visualization Result
In this section, we provide additional visualization re-
sults, comparing the detection results of PGA and other
SOTA physical attack methods under multi-view and multi-
distance settings in a cloudy environment, see Fig. 6

8. Performance of Real-world Attack
In the main text, we introduce the reconstruction and ren-
dering modules of PGA attack framework, which leverage
3DGS to reconstruct and render the target object. Unlike
other physical attack methods, PGA can directly model and
attack using a set of real-world photos of the target object
without requiring prior mesh information or manual con-
struction of virtual environments. To demonstrate the feasi-
bility of directly attacking real-world objects with PGA, we
provide an additional visualization experiments involving a
human subject to generate an adversarial T-shirt. Refer to
Figure 7 for details.



Table 5. Comparison results of P@0.5(%) for different physical attack methods under full-coverage settings on the COCO dataset, targeting
different detection models across various distances and weather conditions. Note that the adversarial camouflage is generated using Faster
R-CNN and evaluated for black-box transferability on YOLO-v5 and Mask R-CNN.

Dis Method Sunny Cloudy Average
Faster R-CNN YOLO-v5* Mask R-CNN* D-DETR* Faster R-CNN YOLO-v5* Mask R-CNN* D-DETR*

5

- 71.86 70.57 73.18 79.76 72.37 73.47 76.06 72.52 73.72
FCA-F[7] 25.69 57.41 31.12 40.48 12.87 48.24 18.61 33.12 33.44
DTA-F[5] 16.94 29.46 21.90 24.73 13.37 36.63 24.15 33.76 25.12

ACTIVE-F[6] 4.45 21.05 12.80 15.33 6.09 14.90 10.43 12.45 12.19
RAUCA-F[8] 1.35 19.26 10.91 14.09 4.48 13.65 11.75 15.49 11.37

PGA-F 0.00 11.44 0.00 8.41 1.38 9.89 2.90 5.44 4.93

10

- 89.03 91.87 91.41 81.47 87.10 94.91 90.65 82.04 88.56
FCA-F 52.84 70.74 55.65 60.34 28.45 45.44 29.78 22.32 45.70
DTA-F 27.95 41.62 30.56 43.19 9.24 20.80 15.33 18.28 25.87

ACTIVE-F 12.02 22.50 18.25 23.12 8.09 16.32 11.82 13.99 15.76
RAUCA-F 0.22 17.38 1.20 18.64 6.50 12.67 11.50 10.20 9.79

PGA-F 0.00 12.55 0.00 8.27 2.63 10.08 4.53 10.45 6.06

15

- 84.12 97.78 94.54 79.66 88.10 97.78 93.52 83.90 89.93
FCA-F 46.59 79.72 64.10 66.23 18.48 49.16 29.88 40.10 49.28
DTA-F 41.46 54.56 48.24 46.38 18.51 29.02 22.61 24.94 35.72

ACTIVE-F 13.72 25.08 21.34 24.02 8.16 28.40 15.42 23.26 19.93
RAUCA-F 5.75 16.46 12.49 15.49 4.22 14.80 10.56 13.81 11.70

PGA-F 0.00 10.72 0.00 6.41 2.08 18.27 5.42 10.45 6.67

20

- 86.50 96.81 91.99 83.37 86.60 98.89 92.35 85.08 90.20
FCA-F 38.61 74.35 50.10 64.32 30.85 42.20 33.76 36.24 46.30
DTA-F 32.40 58.36 39.60 37.80 17.01 28.60 26.80 27.67 33.53

ACTIVE-F 8.54 16.01 10.52 14.91 12.64 19.65 13.48 16.89 14.08
RAUCA-F 3.91 17.50 5.08 12.45 5.88 16.23 14.55 14.81 11.30

PGA-F 0.00 10.66 0.00 4.69 3.83 14.10 5.65 8.23 5.90

Figure 4. Visualization comparison of multi-view detection results in the digital domain using full-coverage adversarial camouflage. Green-
bordered images indicate correct detection of the target vehicle, while red-bordered images indicate either missed detections or detections
with incorrect classifications.



Figure 5. Visualization comparison of multi-view detection results in the digital world. Green-bordered images indicate correct detection
of the target vehicle, while red-bordered images indicate either undetected targets or detection with incorrect classification.



Figure 6. Visualization comparison of multi-view detection results in the digital domain under cloudy weather conditions. Green-bordered
images indicate correct detection of the target vehicle, while red-bordered images indicate either undetected targets or detection with
incorrect classification.

Figure 7. Visualization comparison of real-world objects before and after the PGA attack. The first four rows compare the detection results
of a person wearing and not wearing the adversarial T-shirt, while the last four rows compare the detection results of a car with and without
adversarial camouflage.
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[3] Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned
gaussian splatting for efficient 3d mesh reconstruction and
high-quality mesh rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5354–5363, 2024. 1

[4] Diederik P Kingma. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014. 1

[5] Naufal Suryanto, Yongsu Kim, Hyoeun Kang, Ha-
rashta Tatimma Larasati, Youngyeo Yun, Thi-Thu-Huong
Le, Hunmin Yang, Se-Yoon Oh, and Howon Kim. Dta:
Physical camouflage attacks using differentiable trans-
formation network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15305–15314, 2022. 2, 4

[6] Naufal Suryanto, Yongsu Kim, Harashta Tatimma Larasati,
Hyoeun Kang, Thi-Thu-Huong Le, Yoonyoung Hong, Hun-
min Yang, Se-Yoon Oh, and Howon Kim. Active: Towards
highly transferable 3d physical camouflage for universal and
robust vehicle evasion. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 4305–4314,
2023. 2, 4

[7] Donghua Wang, Tingsong Jiang, Jialiang Sun, Weien Zhou,
Zhiqiang Gong, Xiaoya Zhang, Wen Yao, and Xiaoqian Chen.
Fca: Learning a 3d full-coverage vehicle camouflage for
multi-view physical adversarial attack. In Proceedings of the
AAAI conference on artificial intelligence, pages 2414–2422,
2022. 2, 4

[8] Jiawei Zhou, Linye Lyu, Daojing He, and Yu Li. Rauca:
A novel physical adversarial attack on vehicle detectors via
robust and accurate camouflage generation. arXiv preprint
arXiv:2402.15853, 2024. 2, 4


	Detailed Settings for PGA
	Infrared Detector Attack.
	Attack Common Objects in Autonomous Driving Scenarios.
	Supplement to Ablation Study
	Comparison under Full-Coverage Settings
	Performance of Targeted Attack
	Supplement to Visualization Result
	Performance of Real-world Attack

