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Supplementary Material

In Section A, we present detailed information about our
network architecture and the process of generating our bi-
lateral grids. In Section B, we describe the training config-
urations for each dataset. In Section C, we provide further
experimental analyses. In Section D, we offer additional
visual comparisons.

A. Generation of the Bilateral Grids
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Figure 1. NAF-block

Our proposed method utilize a
three-layer U-net-style NAFNet
[2] as our backbone to gener-
ate the bilateral grids, with each
layer in both the encoder and
decoder comprising two NAF-
blocks (see Figure 1), and the
number of blocks at the bot-
tom level is the same. The
width in NAF-block is set as
16. The feature map output
from NAFNet maintains a chan-
nel numble equal to the model’s
width. We then apply the pixel
unshuffle operation to reduce its
resolution by a factor of 4 while
expanding the channel count by
16 times. Next, two 1×1 convo-
lutions are used to further adjust
the channel dimensions, yielding
two final feature maps.

At this point, following HDR-
Net’s [3] approach, we treat these
feature maps as two bilateral
grids whose third dimension has
been unrolled

Gdc+z[x, y] ↔ Gc[x, y, z] (1)

where d represents the depth of the grid .We slice each map
along the channel dimension into d parts and expand a new
dimension, resulting in a three-dimensional bilateral grid in
which each grid cell contains the required parameters.

B. Experimental Details
B.1. FiveK

Experiments on the FiveK dataset [1] are conducted on
two different resolutions (480p and full resolution) and two

tasks (retouching and tone mapping). For two format im-
ages (8-bit sRGB and 16-bit CIE XYZ) at 480p resolution,
we adopt the dataset released by [8]. For full-resolution im-
ages for tone mapping tasks, we utilize the dataset provided
by [9].

The augmentations include random ratio cropping, ran-
dom flipping and random rotating. For 480p and full-
resolution images, we downsample by factors of 2 and 8,
respectively, resulting in grids that are 1/8 and 1/32 of the
original resolution. The training process consists of 225K
iterations, we set the initial learning rate to 3e-4 and employ
a cosine annealing schedule to gradually reduce it to 4e-6.

B.2. PPR10K

Experiments on the PPR10K dataset [6] are conducted
on the 360p resolution for photo retouching task. The
dataset also includes five augmented versions of the original
training images, and the final training set comprises 53,250
images. For more details, please refer to [6].

The augmentations include random ratio cropping, ran-
dom flipping. We do not perform downsampling on this
dataset, as its native resolution is already low, resulting
in grids that are 1/4 of the original resolution. 3D LUT-
based approaches [5, 6, 8] on this dataset employ ResNet-
18 [4](11.7M) as their backbone, but this network cannot be
used to generate our bilateral grids. For a fair comparison,
we increased the depth of NAFNet to 4 layers, increased the
width to 32 channels, and increased the number of bottom
blocks to 4, thereby raising the model’s parameter count to a
comparable level (11.7M). The training process consists of
500K iterations, We set the initial learning rate to 2e-4 and
employ a cosine annealing schedule to gradually reduce it
to 2e-6.

B.3. LCDP

Experiments on the LCDP dataset [7] are conducted on
the original resolution for exposure correction task. The
augmentations include random ratio cropping, random flip-
ping and random rotating. We downsample the images by
a factor of 2, ultimately generating grids that are 1/8 of the
original resolution. The training process consists of 120K
iterations,, We set the initial learning rate to 4e-4 and em-
ploy a cosine annealing schedule to gradually reduce it to
2e-6.



C. Ablation Studies

Detailed Explanation about Grid Decomposition of Set-
ting 3 in Table ??. We divide the 12 coefficients of the

R’ = a1R + a2G+a3B + b1
G’ = a4R + a5G+a6B + b2
B’ = a7R + a8G+a9B + b3

affine transforma-
tion into 3 parts
and generate a 3-
channel guidance
map, where each channel takes its corresponding subset in-
dicated by different colors.
Selection of Guidance Maps. We adopted the grid decom-
position strategy to obtain multiple subgrids, which makes it
necessary to use different guidance maps to steer the slicing
operation for each corresponding subgrid. We designed two
selection schemes and compare their performance for the
tone mapping task on the FiveK dataset (480p), as shown in
Table 1. In Setting 1, the grid decomposition strategy is not
used, while in Settings 2 and 3 the grids are decomposed
and different guidance map selection schemes are applied.
The first scheme uses each input channel as its own guid-
ance map to extract the corresponding weights, with a con-
volutional network fusing the input into a single channel for
bias extraction. The second scheme, which is the one cur-
rently adopted, feeds the input into a convolutional network
to generate a multi-channel guidance map, with each chan-
nel corresponding to a subgrid.

Table 1. Comparison of two guidance maps selection schemes.

Setting Scheme 1 Scheme 2 PSNR SSIM

1 25.70 0.939
2 ✓ 25.78 0.940
3 ✓ 25.83 0.941

It can be seen that after applying grid decomposition,
both guidance map selection schemes yield performance
improvements, with the second scheme proving to be su-
perior.

Figure 2. Ablation study on different numbers of bilateral grid
depth.

Depth of Bilateral Grid. Depth in a bilateral grid con-
trols the resolution along the intensity dimension. Gen-
erally speaking, higher depth captures finer details at the
cost of efficiency, while lower depth improves speed but
may lose subtle variations. However, since the informa-
tion in our bilateral grids is generated by the network, in-
creasing the depth adds more parameters, which could make
the model harder to train and doesn’t necessarily improve
performance. Therefore, We conduct experiments for tone
mapping on the FiveK dataset to determine the optimal set-
tings, results can be seen in Figure 2. It can be observed
that the model achieves its best performance when the grid
depth is 8, so we ultimately adopt this setting.
Ablation study about MLP depth and channels. We train
models with increased channel numbers and depth of MLP.
According to the table 2, increasing the number of interme-
diate layers in the MLP degrades model performance. This
occurs because the dramatic increase in internal parameters
makes it difficult for the model to learn effectively. While
increasing the depth of the MLP also contributes to this is-
sue, it enhances the model’s nonlinear capabilities, leading
to some improvement in performance. Further increasing
the complexity of MLPs is not able to significantly improve
mapping ability but leads to more computational costs.

Table 2. Ablation study about MLP depth and channels.

Setting Params Time(4K) PSNR

3-8-3 624K 27.8 ms 25.83
3-16-3 741K 42.8 ms 25.81
3-8-8-3 779K 48.3 ms 25.87

D. More Qualitative Results
We provide additional visual comparisons on the LCDP

dataset in Figure 3, 4, 5, 6 and on the FiveK (4K) dataset in
Figure 7, 8, 9, 10.
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Figure 3. Visual comparison with state-of-the-art methods on the LCDP dataset for exposure correction.
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Figure 4. Visual comparison with state-of-the-art methods on the LCDP dataset for exposure correction.
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Figure 5. Visual comparison with state-of-the-art methods on the LCDP dataset for exposure correction.
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Figure 6. Visual comparison with state-of-the-art methods on the LCDP dataset for exposure correction.
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Figure 7. Visual comparison with state-of-the-art methods on the FiveK dataset (4K) for tone mapping.
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Figure 8. Visual comparison with state-of-the-art methods on the FiveK dataset (4K) for tone mapping.
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Figure 9. Visual comparison with state-of-the-art methods on the FiveK dataset (4K) for tone mapping.
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Figure 10. Visual comparison with state-of-the-art methods on the FiveK dataset (4K) for tone mapping.
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