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Figure S.1. Postprocessing and vectorization. We remove arti-
facts in the raw semantic BEV rendering and further smooth the
road boundary for accurate polyline and polygon extraction.

A. Postprocessing
Our postprocessing pipeline refines the initial BEV segmen-
tation to address common artifacts introduced by the sur-
face reconstruction and generates vectorized map elements
suitable for training, as shown in Fig. S.1. In practice, we
extend the BEV renderings by a small margin before post-
processing it to avoid boundary effects. After we obtain the
vectorized elements, we crop them to the desired range.

A.1. Overall pipeline
The postprocessing pipeline consists of the following steps:
Removing artifacts. Due to inaccuracies in the surfel op-
timization, small segments can be misclassified. To re-
duce these artifacts, we employ a class-based connected-
component labeling [39] to identify small segments en-
closed by other segments. These are then reassigned to
the enclosing classes to ensure semantic consistency. Small
segments that are adjacent to more than one class are re-
moved by assigning them either to the BEV mask or to one
of the adjacent classes. We also remove lane-marking seg-
ments (dark blue in Fig. S.1a) that are unreasonably thick.
Extracting the road boundary. We apply morphological
filtering to the outside class (light blue in Fig. S.1), result-
ing in a smoother road boundary, which is extracted by the
border between segments of the road class and segments of
the outside class.
Vectorization of line-shaped elements. We connect spa-
tially close lane-marking fragments through dilation to be-
come the lane dividers. We skeletonize the lane divider
and road boundary segments using the Zhang-Suen algo-

Table S.1. Pipeline ablation for the observed region in single trips.
The default parameters are: 20 pixel/m, 15, and 5 cm.

AP default Resol. [pixel/m] Kernel size Dist. step ϵ(1) [cm]
5 10 40 1 5 25 1 20 100

ped. 23.6 24.0 22.5 22.8 23.4 23.4 23.4 20.8 23.4 23.4
div. 6.0 3.1 5.1 6.5 3.7 4.9 6.7 4.8 4.9 5.0
bdry. 26.8 26.8 25.1 27.0 27.8 27.5 25.9 26.6 27.3 27.4
mean 18.8 18.0 17.6 18.8 18.3 18.6 18.6 17.4 18.5 18.6

rithm [54] into line components. For Y-shaped lines, the
longest path is preserved, while the other branches become
new components. The lines are subsequently converted into
polylines and simplified through iterative polygonal approx-
imation based on the Ramer-Douglas-Peucker (RDP) algo-
rithm [9]. We initialize the maximum distance threshold
with ϵ(1) and iteratively increase it as ϵ(t) = ϵ(1)t until the
simplified polyline contains no more than L points. Finally,
lane dividers that are overly close and parallel to boundaries
or pedestrian crossings are removed.
Vectorization of polygon-shaped elements. To extract
the borders of pedestrian crossings, we first employ the
Suzuki-Abe border-following algorithm [44]. Similar to
line-shaped elements, we then apply the RDP algorithm to
obtain a simplified yet accurate polygonal representation.

A.2. Parameter ablation
For the postprocessing, there come many parameters with
every filter and every algorithm we add. Thus, we mostly
manually fine-tuned them based on qualitative BEV results.
However, we provide an ablation for the key pipeline pa-
rameters in Tab. S.1, using pseudo labels on the same vali-
dation set as in our main experiments. We evaluate the BEV
resolution, the kernel size for the morphological dilation of
the lane-markings, and ϵ(1), the initial distance threshold
and step size, for polyline and polygon simplification. A
higher resolution improves the lane dividers but slightly re-
duces pedestrian crossing AP, which can be explained by
their different shape types. Larger dilation kernels show to
significantly improve the lane preservation as fragmented
lanes get connected again. We also notice that a too small
ϵ(1) (i.e., a too faithful approximation) harms the quality
of pedestrian crossings. To ensure full reproducibility, we
published the code.

B. Linear Program Formulation
We perform both one-to-one and one-to-many assignment
to optimally match elements between predictions and frag-
mented pseudo-labels. Thereby, we formulate a binary in-



teger linear program with the following constraints: each
pseudo-label element is assigned exactly once, and each
prediction is assigned at most once. Our objective is to min-
imize the total matching cost.

Let the binary variable

xij ∈ {0, 1}, ∀i ∈ Qind, j ∈ Gind, (8)

denotes the direct one-to-one assignment between the pre-
dicted element qi and the pseudo-label element gj , and

yiJ ∈ {0, 1}, ∀i ∈ Qind, J ∈ J , (9)

denotes a one-to-many assignment between the predicted
element qi and a set of pseudo-label elements {gj}j∈J . We
enforce that every pseudo-label element should be assigned
exactly once by

∑
i∈Qind

xijG +
∑

J∈J |jG∈J

yiJ

 = 1, ∀jG ∈ Gind, (10)

and that every prediction should be assigned not more than
once by

xi + yi ≤ 1, ∀i ∈ Qind (11)

with xi =
∑

j∈Gind
xij as the one-to-one flag and yi =∑

J∈J yiJ as the one-to-many flag. The overall objective
is to minimize the total cost:

min
{xij},{yiJ}

∑
i∈Qind

 ∑
j∈Gind

co2o(qi, gj)xij +
∑
J∈J

co2m(S
i, J) yiJ

 (12)

yielding an optimal matching denoted as x∗
ij , y

∗
iJ .

C. Centerlines
In addition to the evaluated map classes, centerlines are
imaginary lines that run along the middle of driving lanes
and serve as crucial references for planning. However, since
we cannot infer these lines from our BEV segmentation, we
suggest two potential approaches for future work: deriving
centerlines from ego trajectories or extracting them from
parallel polylines of existing map elements. Both methods
have limitations, such as ego trajectories reflecting overtak-
ing maneuvers and parallel polylines introducing ambigui-
ties at intersections. A promising strategy might be combin-
ing these approaches for mutual verification. Fig. S.2 pro-
vides a preliminary example of centerlines generated from
multiple ego trajectories.

D. Qualitative Results
Further qualitative results of our pseudo-labels compared to
the ground-truth map are shown in Fig. S.3.

Figure S.2. Centerlines derived by multi-trip ego trajectories.

E. Pseudo-Label Generation Details
We train the Mask2Former [6] segmentation model on 1x
NVIDIA A100 GPU with a Swin-L transformer [27] with
200 queries as its backbone and pre-trained on ImageNet-
21k [40]. For the surface optimization, we also use 1x A100
GPU. For combining data from multiple trips, we limit the
maximum number of trips to 50 to reduce runtime and avoid
memory peaks. We group trips based on the minimum dis-
tance of their ego trajectories and deliberately exclude com-
binations of trips from the training set with those from the
validation set. For the meshgrid expansion, we follow [10]
and choose an offset of r = 7 m along the ego trajectory.
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Figure S.3. Additional qualitative results. We plot the lane dividers (orange), road boundaries (red), and pedestrian crossings (blue) for
pseudo-labels and ground truth (GT).
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