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A. Additional Experiment Results
A.1. Additional Comparison on Human3.6M

We evaluate our model’s effectiveness across different in-
put sequence lengths. In Tab. 5, we present results using
a 243-frame input. Despite the shorter sequence length
compared to 351 frames, our model retains strong perfor-
mance, demonstrating its robustness. Our approach sur-
passes the state-of-the-art PoseMamba-X [5] in direct com-
parison with SAMA-L, achieving a 0.4mm reduction in
MPIJPE with a sequence length of 243. Across model vari-
ants, our method consistently delivers high accuracy, report-
ing MPJPE values of 40.6mm and 37.7mm for SAMA-
S and SAMA-B, respectively, compared to 41.8mm and
40.8mm for PoseMamba-S and PoseMamba-B. This re-
sults in reductions of 1.2mm and 3.1mm for SAMA-S
and SAMA-B, respectively, with comparable model size
and MACs. For SAMA-L, aligning the estimated poses
yields a P-MPJPE of 31.3, reflecting an advanced perfor-
mance level. Regardless of model size, our approach con-
sistently outperforms PoseMamba. With ground truth 2D
poses as input, SAMA-L further achieves an MPJPE of
11.9mm, marking a substantial improvement over Pose-
Mamba (11.9 v.s. 14.8).

A.2. Per-Action Performance Comparison

We present per-action pose estimation results in Tab. 6, with
detected 2D poses as inputs. The experimental results show
that our method outperforms previous models in most ac-
tion categories. We attribute the superior performance of
our model across different action types to the design of SSI
and MSM. In various actions, the joint topology relation-
ships differ. In SSI, the proposed learnable adjacency ma-
trix dynamically captures these varying relationships. Ad-
ditionally, the motion characteristics across different action
types are distinct. Our MSM can dynamically recognize
these differences and regulate the timescale in the SSM,
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Table 1. MPJPE comparison by varying number of SSI and MSM
blocks and number of channels on Human3.6M with detected 2D
inputs from SHnet. D: Number of channels.

K (Depthy D  Param (M) MACs/frame (M) MPJPE
2 128 1.1 M 18 M 40.2
5 128 2.8M 45M 37.8
6 128 33M 54 M 374
7 128 3.8M 63 M 37.5
7 256 151 M 207 M 36.7
8 256 17.3 M 234 M 36.5
9 256 19.5M 263 M 36.5

thereby capturing more joint motion features.

B. Additional ablation study

B.1. Hyperparameter Setting Analysis

The network has two key hyperparameters: the depth of our
SAMA (K) and the model dimension (D). We organize the
configurations into two groups, with each group evaluating
one hyperparameter by varying its value while keeping the
other fixed, as shown in Tab. 1. This allows us to assess the
impact and selection of each hyperparameter configuration.

B.2. Effect of Position Embedding

Unlike previous methods, we remove spatial and temporal
embeddings. As shown in Tab. 3, adding these embeddings
does not improve accuracy. We attribute this to the strong
sequence modeling ability of Mamba-based models, which
inherently capture spatial and temporal positions. Extra em-
beddings may introduce redundancy and hinder learning.

B.3. Model Varients

We introduce three configurations for our SAMA, as de-
tailed in Tab. 4. The SAMA-B serves as the base model,
offering a balance between accuracy and computational ef-
ficiency. The remaining variants are named according to



Table 2. Comparable architecture varients. PM denotes Pose-
Mamba. N: Number of layers. D: Dimension of model.

Param Infer speed

Method T N D M) (samples/s)
PM-S 243 20 64 0.9 4667
PM-B 243 20 128 3.4 2805
PM-X 243 40 256 26.5 908

T SAMA-S T 243 T8 T 128 T 13 T T 10411
SAMA-B 243 24 128 33 3658
SAMA-L 243 32 256 17.3 1298

Table 3. Ablation study for spatial and temporal embeddings.

Spa. Embedding Temp. Embedding MPIJPE|
- - 37.4
v - 374
v v 37.5

Table 4. SAMA model variants. M denotes Number of layers. d
means the dimension of model. Param represents the number of
model parameters. MACs/frame represents multiply-accumulate
operations per output frame.

Method K (Depth) D Param(M) MACs/frames (M)
SAMA-S 2 128 1.2 18
SAMA-B 6 128 33 54
SAmA-L 8 256 17.1 234

their parameters and computational demands. The choice
of each variant depends on the specific requirements of the
application, such as real-time performance or accuracy in
estimations.

B.4. Comparable architecture varients.

The SAMA variants (S/B/L) correspond to the PoseMamba
variants (S/B/X) in model scale. Detailed architecture lay-
ers, parameters, and inference speed are shown in Tab. 2.

C. Additional Visualization

C.1. Effect of Structure-aware State Integrator

As mentioned in the Method section, the SSD mixer
family of Mamba-2 has been shown to be equivalent to
sequentially-semi-separable matrices. The SSD can be for-
mulated as:

y; = Fz; =P - (CTB)z, (1)

where P;; is defined as follows: P;; = Ai +1 x -+ x Aj
fori > j, P;; = 1 when¢ = j, and P;; = 0 fori < j.
Consequently, the Mamba-2 network can be interpreted as
a causal linear attention mechanism with a learnable causal
mask. In Fig. 1, we visualize the matrix F' from Eq. (1) . It
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Figure 1. Visualization of SSM map among body joints and
frames.

Ours

Figure 2. Qualitative comparisons of PoseMamba and our method
in in-the-wild scenarios. We highlight the deviated 2D detection
results with green arrows and corresponding 3D pose estimations
with orange arrows.

Input PoseMamba

reveals that the attention map of SSD forms a lower trian-
gular matrix, meaning each joint can only be influenced by
those with a smaller joint index. In contrast, our learnable
adjacency matrix provides a global perspective, allowing all
joints to exchange information while preserving the original
joint topology effectively.

C.2. Additional visualization of estimated poses

Fig. 5 illustrates the 3D pose predictions of MotionBERT,
PoseMamba, and our method, where ground truth poses are
shown in blue and estimated poses in orange. Additional
examples further support our findings in the main text: our
approach achieves higher accuracy than PoseMamba and
MotionBERT, especially in highly dynamic limb regions.
This underscores the effectiveness of our SSI and MSM,
which enhances joint connections and motion capture pre-
cision and improves overall performance.

C.3. Generalization to in-the-wild scenarios.

We add qualitative results under in-the-wild conditions. In
Fig. 2, our method obtains more reliable 3D human pose,
even in cases where the human actions are complex and
rare.
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C.4. Joints with high degrees of freedom.

We evaluate the per-joint MPJPE on Human3.6M (Fig. 3).
Our method consistently outperforms PoseMamba, with
particularly notable improvements on joints with high de-
grees of freedom, such like wrist, indicating our model ef-
fectively captures complex joint dynamics.

D. Additional Related Work

D.1. Mamba-based Models in Human-Centric
Tasks

Gu et al. [4] first introduce the Linear State Space Layer
(LSSL) to effectively manage long-range dependencies in
extensive sequences. Motion Mamba [16] consists of two
modules: Hierarchical Temporal Mamba (HTM), which en-
hances motion consistency across frames, and Bidirectional
Spatial Mamba (BSM), which captures the bidirectional
flow of channel-wise hidden information. Hamba [2] first
incorporates graph learning and state space modeling for
reconstructing a robust 3D hand mesh. It proposes a sim-
ple yet effective Graph-guided State Space (GSS) block to
capture structured relations between hand joints.

D.2. 2D-to-3D Pose Lifting

Peng et al. [10] propose KTPFormer, incorporating Kine-
matics Prior Attention (KPA) and Trajectory Prior Atten-
tion (TPA) to leverage human anatomical structure and mo-
tion trajectory, enhancing global dependency learning in
multi-head self-attention. PoseFormerV2 [17] makes slight
modifications to PoseFormer, leveraging transformers to ef-
fectively aggregate temporal and frequency domain infor-
mation, significantly improving computational speed while
maintaining strong performance. Unlike prior works such
as MotionAGFormer [9], POT [6], and KTPFormer [10]
that use GCNs or complex attention for spatial modeling,
we adopt a lightweight learnable matrix for joint feature ag-
gregation in the state space. Temporally, rather than treat-
ing joints across frames uniformly, we leverage Mamba’s
timescale to capture joint-specific dynamics.

D.3. Diverse scanning method of Mamba

To achieve this goal, rather than adopting repeated scan-
ning strategies as in prior works, we incorporate a structure-
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Figure 4. Diverse scanning method of Mamba

aware state transition into the original Mamba formulation.
As shown in Fig. 4, we illustrate the different scan mecha-
nisms used in previous methods, including PoseMamba and
PoseMagic.



Table 5. Quantitative comparisons on Human3.6M. T": Number of input frames. CE: Estimating center frame only. MACs/frame: multiply-
accumulate operations per output frame. P1: MPJPE (mm). P2: P-MPJPE (mm). P1f: P1 on 2D ground truth. (*) denotes using HRNet
for 2D pose estimation. The best and second-best scores are in bold and underlined, respectively.

Method T CE  Param(M) MACs(G) MACs/frame(M) Pl /P2) P1ty
*MHFormer (cveroo2 [7] 351 v 30.9 7.0 20 43.0/34.4 30.5
MixSTE (cvero2 [14] 243 X 33.6 139.0 572 40.9/32.6 21.6
P-STMO (scevana [11] 243 v 6.2 0.7 3 42.8/34.4 29.3
Stridedformer rvinvi202) [8] 351 v 4.0 0.8 2 43.7/35.2 28.5
Einfalt e al. jwacvoo23 [3] 351 v 10.4 0.5 1 44.2/35.7 -

STCFormer (cvero023) [12] 243 X 4.7 19.6 80 41.0/32.0 21.3
STCFormer—L [CVPR2023] [12] 243 X 18.9 78.2 321 40.5/@ -

PoseFormerV2 jcveros) [17] 243 v 14.4 4.8 20 45.2/35.6 -

GLA-GCN jicevaons [13] 243 v 1.3 1.5 6 44.4/34.8 21.0
MotionBERT (iccvaos) [18] 243 X 423 174.8 719 39.2/32.9 17.8
HDFormer [icanozs [1] 96 X 3.7 0.6 6 42.6/33.1 21.6
MotionAGFormer-L (wacvaos [9] 243 X 19.0 78.3 322 38.4/32.5 17.3
KTPFormer (cvera04) [10] 243 X 352 76.1 313 40.1/31.9 19.0
PoseMagic (anivas [15] 243 X 14.4 20.29 84 37.5/- -

PoseMamba-S (aans [5] 243 X 0.9 3.6 15 41.8/35.0 20.0
PoseMamba-B (aaan0s) [5] 243 X 34 13.9 57 40.8/34.3 16.8
PoseMamba-L (aaan02s [5] 243 X 6.7 27.9 115 38.1/32.5 15.6
PoseMamba-X (1a12025) [5] 243 X 26.5 109.9 452 37.1/31.5 14.8
SAMA-S (Ours) 243 X 1.1 39 16 40.6/34.0 20.2
SAMA-S (Ours) 351 X 1.1 6.3 18 40.2/33.8 19.5
SAMA-B (Ours) 243 X 33 11.7 48 37.7/32.0 13.6
SAMA-B (Ours) 351 X 33 18.9 54 37.4/31.7 12.4
SAMA-L (Ours) 243 X 17.3 53.2 219 36.9/31.3 11.9
SAMA-L (Ours) 351 X 17.3 82.1 234 36.5/31.0 114
vs. prev. SoTA - - J11.2 1218 10.6/10.5 13.4

Table 6. Quantitative Per-action performance comparisons on Human3.6M using detected 2D pose as input. The best result is marked in
blue in each column.

Protocol 1 Dir. Disc. Eat Great Phone Photo Pose Pur Sit  SitD.  Smoke  Wait WalkD. Walk  WalkT. Avg
MixSTE [14] 36.7 390 365 394 40.2 449 398 369 479 548 39.6 37.8 39.3 29.7 30.6 39.8
MHFormer [7] 39.2 431 40.1 409 449 512 406 413 535 603 437 41.1 43.8 29.8 30.6 43.0
P-STMO [11] 384 421 398 402 452 489 404 383 538 573 439 41.6 422 29.3 29.3 42.1
STCFormer [12] 384 412 368 380 42.7 505 387 382 525 568 41.8 384 40.2 26.2 27.1 40.5
MotionBERT [18] 363 387 386 336 42.1 50.1 362 357 501 566 41.3 374 37.7 25.6 26.5 39.2
GLA-GCN [13] 413 443 408 418 45.9 54.1 42.1 415 578 629 45.0 42.8 459 29.4 29.9 44.4
KTPFormer [10] 379 398 359 376 42.5 482 386 390 514 559 41.6 39.0 40.0 27.0 274 40.1

SAMA-S (Ours) (T=351) 373 409 395 344 42.1 500 377 370 519 575 41.7 38.0 39.1 27.3 27.8 40.2
SAMA-B (Ours) (T=351) 349 389 355 322 39.9 474 359 350 471 526 38.9 36.0 36.9 25.2 255 37.4
SAMA-L (Ours) (T=351) 342 372 347 312 39.3 46.0 343 335 464 528 37.7 352 34.9 24.6 25.5 36.5
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Figure 5. Additional visual comparable results of estimated 3D poses with MotionBERT and PoseMamba.
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