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A. Adversarial Distribution Matching
During the ADM distillation process, the fake score esti-
mator, generator, and discriminator are updated alternately.
The Algorithm 1 below clarifies the training procedure. Our
ablation experiments in Sec. 5.3 demonstrate that TTUR
has minimal impact on the final performance. Therefore, in
our experiments, we set TTUR to 1, meaning that the fake
model and generator are updated at the same frequency.

Algorithm 1 ADM Training Procedure
1: Input: pretrained teacher model as real score estimator Fϕ
2: Output: few-step generator Gθ with schedule {t0, t1, ..., tN}
3: Initialize: fake score estimator fψ ← Fϕ, generator Gθ ← Fϕ,

latent-space discriminator Dτ ← Fϕ with multiple trainable heads,
generator iteration genIter ← 0, global iteration globalIter ← 0

4: while genIter < maxIter do
5: globalIter += 1
6:
7: // update fake score estimator fψ
8: sample pure noise z ∼ N (0, I)
9: solve the PF-ODE w.r.t. N steps in schedule x0 ← Gθ(z, ·)

10: sample new pure noise zf and random timestep tf
11: update ψ with (x0, tf ,zf ) and pretrain loss in Eq. (2) or Eq. (3)
12: if not (globalIter % TTUR) == 0 then continue
13:
14: // update generatorGθ

15: sample pure noise ẑ and random index n ∈ [1, N ]
16: solve the PF-ODE w/o grad following tN → tN−1 → ...→ tn,

i.e. ẑ = x̂tN → x̂tN−1 → ...→ x̂tn
17: solve the PF-ODE w/ grad w.r.t. t0, i.e. x̂0 = Gθ(x̂tn , tn)
18: sample new pure noise zg and random timestep t ∼ U(0, T )
19: diffuse sample x̂0 with zg and Eq. (1), i.e. xt = q(xt|x̂0)
20: solve the PF-ODE of fψ w.r.t. (t−∆t) to obtain xfake

t−∆t

21: solve the PF-ODE of Fϕ w.r.t. (t−∆t) to obtain xreal
t−∆t

22: update θ with (xfake
t−∆t, t−∆t) and Eq. (7)

23: genIter += 1
24:
25: // update discriminatorDτ

26: update τ with (xfake
t−∆t,x

real
t−∆t, t−∆t) and Eq. (8)

27: end while

B. Implementation Details
B.1. 2D Discriminator Design
In Fig. 6, we thoroughly illustrate the design of our dis-
criminators and the difference between two training stages.
For all the trainable heads appended to discriminator back-
bone for text-to-image experiments, we have a fixed 2D
design following SDXL-Lightning [23], which consists of
simple blocks of 4×4 2D convolution with a stride of 2,
group normalization [76] with 32 groups, and SiLU activa-
tion [10, 54] layer. The difference is that we will append
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BatchSize
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Memory

DMD2 20K 64 60 hours 3840 2 -
DMDX 8K+8K 32 70 hours 2240 4 39.6 GiB
- ADP 8K 32 55 hours 1760 4 39.6 GiB
- ADM 8K 32 15 hours 480 4 24.1 GiB

Table 7. Comparisons on A100 GPU efficiency with DMD2. The
elapsed time for ADP already includes collection of ODE pairs.

multiple heads at different layers of the network. Whether
it is the output of UNet [57], DiT [49] or ViT [5], we uni-
formly reshape it into [Batch,Channel,Height,W idth]
and then use it as the input to the discriminator head. For
SDXL [56], we take the output of the last ResNet [9]
of each block (including down-sampling, mid and up-
sampling blocks), yielding a total of 7 discriminator heads.
For SD3 series [6] models, we take the output of each DiT
block, yielding 24 and 38 discriminator heads for SD3-
Medium and SD3.5-Large, respectively. For SAM [19] and
DINOv2 [48], we take the output of layers 3, 6, 9 and 12,
yielding 4 discriminator heads.

B.2. 3D Discriminator Design

Our 3D discriminator head for text-to-video latent diffusion
models consists of simple blocks of 3×3×3 3D convolu-
tion with a stride of 1, 3×3 2D convolution with a stride
of 2, group normalization with 32 groups and SiLU activa-
tion layer. This is similar to the design in 2D discriminator
head except that we additionally insert several 3D convo-
lution layers to extract time-dependent feature. The output
of specific blocks within video DiT backbone are reshaped
into [Batch,Channel,T ime,Height,W idth] and input
to corresponding discriminator head. In practice, we extract
features every 3 DiT blocks due to the computational effort
of 3D convolution, yielding a total of 10 and 14 discrim-
iantor heads for 2B and 5B models, respectively.

B.3. GPU efficiency.

In Tab. 7, we present the training configurations and GPU
consumption of our proposed method compared to DMD2.
The table demonstrates that we actually achieve better per-
formance over DMD2 with less GPU time and don’t im-
pose excessive demands on GPU memory. Although main-
taining more networks during training process, our imple-
mentation attains manageable memory footprint with sev-
eral optimizations detailed later.
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Figure 6. Illustration of our discriminator design and the difference between ADM and ADP.

B.4. Memory efficiency.
To reduce GPU memory footprint and improve efficiency,
we utilize several acceleration techniques in our implemen-
tation including Fully Sharded Data Parallel (FSDP) [53],
gradient checkpoint [4] and BF16 mixed precision [72].
For text-to-video models, we additionally integrate, Context
Parallel (CP) [83] and Sequence Parallel (SP) [15] follow-
ing common practice in MovieGen[46] to speed up training
and inference. More importantly, a CPU offloading tech-
nique that has been built into Pytorch FSDP is essential for
training multiple networks to save memory.

With CPU offloading enabled, each parameter along
with the corresponding gradient and optimizer state can be
offloaded from the GPU to CPU memory. In conjunction
with gradient checkpointing, the GPU memory footprint in
the forward and backward process is nearly the same as
when there is only one single network, because the peak
memory is now determined by the maximum activation of
each block. This comes at the cost of increased CPU mem-
ory and longer time per iteration. While the CPU memory is
usually sufficient and cheap, our more effective approaches
require fewer iterations to achieve convergence and satis-
factory results, and as Tab. 7 show that our DMDX takes
less time than DMD2 on one-step SDXL distillation.

B.5. Hyperparameters.
For all models of the optimizer (including generator, fake
model and discriminator in both text-to-image and text-to-
video experiments), we use AdamW [29] optimizer without
weight decay, with beta parameters (0.0, 0.99) to capture
the changes in distribution more up-to-date. The learning
rates of discriminator and fake model across all of our ex-
periments are fixed at 5e-6 and 1e-6, respectively.

For SDXL, the learning rates for generator during ADP
and ADM training are 1e-6 and 1e-7, respectively. As for
multi-step ADM distillation, the learning rates for generator

of SD3-Medium LoRA training and SD3.5-Large fully fine-
tuning are given to 1e-6 and 1e-8, respectively. In case of
text-to-video diffusion distillation, we set the same learning
rate 1e-7 for different 8-step CogVideoX generators.

Among all the ADM experiments, the Classifier-Free
Guidance (CFG) is required for real model as DMD
does [85]. For SDXL, SD3-Medium, SD3.5-Large, and
CogVideoX, the uniformly random sampling ranges for the
CFG values are set to [6.0, 8.0], [6.0, 8.0], [3.0, 4.0], and
[5.0, 7.0], respectively. The chosen ranges are based on the
recommended CFG values from the original baseline’s in-
ference with some allowable variations. We observed that
this setting is adequate for achieving satisfactory distilled
performance without requiring extensive tuning.

The fake model training does not incorporate CFG and
uses the same loss function as the standard pre-training of
diffusion models, except that we didn’t set any dropout. For
noise-parameterized models, the prediction target is noise,
while for velocity-parameterized models, it is velocity.

C. Main Results
C.1. Efficient Image Synthesis
Fig. 7 qualitatively compares our method with other state-
of-the-art distillation techniques on SD3 [6] series models.
The results demonstrate that our method is competitive to
the original model in terms of color, detail, structure and
image-text alignment, while outperforming other methods
including TSCD, PCM [69], Flash [3] and LADD [60].

C.2. Efficient Video Synthesis
Tabs. 8 and 9 present the details of VBench [14] results on
the base model and few-step generators of CogVideoX [83].
In Figs. 11 to 16, we present several cases for qualitative
comparisons between our CogVideoX [83] generators and
baseline model. The results show that our 8-step genera-



Method Step NFE
Final
Score

Quality
Score

Semantic
Score

Subject
Consistency

Background
Consistency

Temporal
Flickering

Motion
Smoothness

Dynamic
Degree

Aesthetic
Quality

Imaging
Quality

ADM 8 8 78.58 80.82 69.62 96.72 96.55 97.01 98.14 48.61 57.80 65.28
+Longer Training ×2 8 8 80.76 83.03 71.69 96.58 96.71 98.12 97.68 73.33 57.90 65.72
ADM w/ CFG 8 16 79.86 80.93 75.56 96.16 96.96 96.86 97.69 54.44 59.78 63.18
+Longer Training ×2 8 16 81.79 83.00 76.94 96.83 96.90 98.51 98.07 63.05 61.03 64.62
CogVideoX-2b 100 200 80.03 80.80 76.97 92.53 95.22 97.79 97.00 69.44 60.38 60.69

ADM 8 8 82.06 83.22 77.42 96.42 96.87 96.96 97.69 68.88 61.17 69.01
ADM w/ CFG 8 16 80.98 82.16 76.25 96.15 96.59 95.99 98.57 56.66 61.01 68.68
CogVideoX-5b 100 200 81.22 81.78 78.98 92.52 96.68 98.34 96.97 70.55 61.67 61.88

Table 8. VBench [14] detailed results on overall scores and separate score for each quality dimension.

Method Step NFE
Object
Class

Multiple
Objects

Human
Action Color

Spatial
Relationship Scene

Appearance
Style

Temporal
Style

Overall
Consistency

ADM 8 8 83.97 47.19 87.40 77.79 62.93 42.64 24.16 22.35 25.27
+Longer Training ×2 8 8 87.84 56.53 85.00 80.28 69.52 44.33 23.15 22.60 25.11
ADM w/ CFG 8 16 89.55 64.78 92.60 82.31 62.61 52.73 24.31 24.46 26.12
+Longer Training ×2 8 16 91.67 71.58 92.20 82.01 71.79 50.26 23.54 24.54 26.30
CogVideoX-2b 100 200 80.01 67.23 98.60 89.98 49.05 68.60 24.04 25.37 25.68

ADM 8 8 92.94 65.89 95.80 84.97 72.92 56.06 22.63 23.64 26.17
ADM w/ CFG 8 16 89.41 69.89 97.00 71.35 81.26 53.90 21.48 23.79 25.92
CogVideoX-5b 100 200 87.64 67.34 99.60 83.93 68.24 56.35 25.16 25.82 27.79

Table 9. VBench [14] detailed results on separate score for each semantic dimension.
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Figure 7. Qualitative results on LoRA fine-tuning SD3-Medium and fully tine-tuning SD3.5-Large.

tors are generally semantically comparable to the original
model, even with semantic enhancements on some cases,
e.g., the change of light in Fig. 11 and the movement of
the sheep in Fig. 14. While in terms of imaging quality,
generators with CFG are generally more detailed and have
more delicate textures than those without CFG. The defi-
ciencies in detail are reflected in, for example, the slightly
rough hand and the incorrect number of fingers in Fig. 15,
whereas the one with CFG is much more natural. As well

as the generator without CFG is also much higher in color
contrast, which visually looks sometimes too vibrant to be
sufficiently realistic. These demonstrate the importance of
CFG for text-to-video models, which might not be fully re-
flected by quantitative metrics.

C.3. Ablation Studies
As for ablation on adversarial distillation shown in Fig. 8,
the two main problems with other baseline settings are
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Figure 8. Qualitative comparisons for ablation studies on adversarial distillation.
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Figure 9. Qualitative comparisons for ablation studies on score distillation.



A puppy rests on the street next to a bicycle. (Left: DMD2, Right: DMDX) A close up picture of a brown bear's face. (Left: DMD2, Right: DMDX)

A boat in the distance on a clear lake. (Left: DMD2, Right: DMDX) Dark clouds spreading across a field and a house. (Left: DMD2, Right: DMDX)

Figure 10. Qualitative diversity comparisons with DMD2.

structure and blurriness. When using MSE loss for a single
reflow process as in Rectified Flow [27], it is obvious that
it is struggling to generate a structurally visible image. And
switching the SAM [19] model to DINOv2 [48], we can
clearly see the structural collapse of both the robot and the
face in the figure, which is unexpected and may be caused
by the fact that its input resolution is only 518px, and the
images we generate are all 1024px need to be resized before
they can be input. Another possible explanation is that the
prior knowledge used by SAM for instance segmentation
is richer than that provided by DINOv2 for discriminative
self-supervised learning, which facilitates the generation of
local fine-grained details. The structural problems encoun-
tered when increasing the weight of pixel-space λ2 are sim-
ilar, while decreasing its weight causes a very noticeable
blurring that is clearly visible in the figure, so we suggest
setting λ1 = 0.85, λ2 = 0.15 is a reasonable configuration.

In Fig. 9, we provide qualitative comparisons for abla-
tion studies on score distillation. Compared to the baseline
without ADM (ADP only), we can see that the ADM dis-
tillation indeed serves as a fine-tuning process to refine the
generator in terms of both color, detail and the most notable
structure. Although standalone ADM can also produce effi-
cient generator, the noise artifact within 1-step generations
as similarly observed by [23, 85] still exists, and with our
ADP this issue can be addressed well. Notably, the visu-
alization results demonstrate that employing the DMD loss
without ADP integration induces substantially severe noise
artifacts. Compared to using ADM alone, its qualitative dis-

advantage is much more pronounced than the gap observed
in the quantitative results. With ADP, the DMD loss gener-
ates relatively good results, yet it remains inferior to ADM
in terms of visual fidelity and structural integrity. This in-
dicates that its distribution matching capability is weaker
than that of ADM, which is consistent with our analysis in
the quantitative results of Sec. 5.3.

Additionally, we showcase additional randomly curated
multi-seed samples in Fig. 10 compared with DMD2,
clearly demonstrating that our images exhibit richer vari-
ations in texture, color, brightness, contrast and structural
composition.

D. Broader Impact
Considering that many current methods leverage generated
data from foundation models as assistance [44], our ac-
celeration approach for diffusion models can substantially
expedite this process, thereby benefiting numerous down-
stream tasks such as recognition [77], detection [42], re-
trieval [31, 41], domain adaptation [32, 62], etc. Alterna-
tively, we can train LoRA to acquire an acceleration plugin,
enhancing the efficiency of customized vertical models for
image [33] or video [80] generation.

E. Prompt List
Below we list the text prompts used for the generated con-
tent shown in this paper (from top to bottom, from left to
right). Note that since models like SDXL-Base [56] only



use CLIP [52] as a text encoder, which only supports a max-
imum of 77 tokens, the response and text-image alignment
may be insufficient for some long prompts and its limited
capacity in understanding.

We use the following prompts for Fig. 5:
• A beautiful woman facing to the camera, smiling confi-

dently, colorful long hair, diamond necklace, deep red lip,
medium shot, highly detailed, realistic, masterpiece.

• An owl perches quietly on a twisted branch deep within
an ancient forest. Its sharp yellow eyes are keen and
watchful.

• A young badger delicately sniffing a yellow rose, with a
lion lurking in the background.

• A pickup truck going up a mountain switchback.
We use the following prompts for Fig. 7:

• A photograph of a giant diamond skull in the ocean, fea-
turing vibrant colors and detailed textures.

• A still of Doraemon from ”Shaun the Sheep” by Aardman
Animation.

• A pizza is displayed inside a pizza box.
• movie still of a man and a robot in a moment of hor-

ror, movie still, cinematic composition, cinematic light,
by edgar wright and david lynch

• harry potter as a skyrim character
• film still of Tom Cruise as Ironman in the Avengers
• A beautiful award winning picture of a cute cat in front

of a dark background. The cat is a cat-peacock hybrid
and has a peacock tail and short peacock feathers on the
body. fluffy, extremely detailed, stunning, high quality,
atmospheric lighting

• a cute animal that’s a penguin cat hybrid
We use the following prompts for Fig. 8:

• A colorful tin toy robot runs a steam engine on a path
near a beautiful flower meadow in the Swiss Alps with a
mountain panorama in the background, captured in a long
shot with motion blur and depth of field.

• A portrait painting of Leighann Vail.
• A photo of a mechanical angel woman with crystal wings,

in the sci-fi style of Stefan Kostic, created by Stanley Lau
and Artgerm.

• A painting depicting a foothpath at Indian summer with
an epic evening sky at sunset and low thunder clouds.
We use the following prompts for Fig. 9:

• A bear walks through a group of bushes with a plant in its
mouth.

• A falcon in flight, depicted in a highly detailed painting
by Ilya Repin, Phil Hale, and Kent Williams.

• A steampunk pocketwatch owl is trapped inside a glass jar
buried in sand, surrounded by an hourglass and swirling
mist.

• Some giraffes are walking around the zoo exhibit.
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Figure 11. Qualitative comparisons on CogVideoX-2b generators. The random seed has been fixed. Prompt: A time-lapse sequence cap-
tures the transformation of the iconic Eiffel Tower fromdaylight into the evening. The tower, standing tall and majestic in its originalgolden
hue, gradually transitions into a silhouette against the twilight sky. Asthe sun sets, the city lights begin to flicker on, casting a warm glow
over theParisian landscape. The tower’s intricate iron lattice structure becomes more defined,its shadow lengthening across the Champ de
Mars. The background includes the SeineRiver and the Parisian rooftops, adding depth and context to the scene. As darknessfalls, the
Eiffel Tower is illuminated by its own lights, turning into a beaconof Paris, shimmering against the starry backdrop.
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Figure 12. Qualitative comparisons on CogVideoX-2b generators. The random seed has been fixed. Prompt: A vibrant oak tree, adorned
with festive Halloween decorations, stands tall in asuburban backyard. The trunk is thick and sturdy, supporting a variety of decora-
tions.Hanging from its branches are luminous orange and black balloons, spooky spiderwebs,and fluttering ghosts. A large, carved pump-
kin sits at the base, its intricate faceaglow with a warm, welcoming light. The scene is set against a backdrop of neatlytrimmed hedges and
a path leading up to a quaint house, all bathed in the soft glowof autumn sunlight.
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Figure 13. Qualitative comparisons on CogVideoX-2b generators. The random seed has been fixed. Prompt: The camera follows behind a
white vintage SUV with a black roof rack as it speedsup a steep dirt road surrounded by pine trees on a steep mountain slope, dust kicksup
from it’s tires, the sunlight shines on the SUV as it speeds along the dirt road,casting a warm glow over the scene. The dirt road curves
gently into the distance,with no other cars or vehicles in sight. The trees on either side of the road areredwoods, with patches of greenery
scattered throughout. The car is seen from therear following the curve with ease, making it seem as if it is on a rugged drivethrough the
rugged terrain. The dirt road itself is surrounded by steep hills andmountains, with a clear blue sky above with wispy clouds.
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Figure 14. Qualitative comparisons on CogVideoX-5b generators. The random seed has been fixed. Prompt: A fluffy, white sheep stands
in a lush, green meadow, its wool glistening under the warm afternoon sun. The scene transitions to a close-up of the sheep’s gentle face,
its big, curious eyes and soft, twitching ears capturing attention. The background features rolling hills dotted with wildflowers and a clear
blue sky. The sheep then grazes peacefully, its movements slow and deliberate, as a gentle breeze rustles the grass. Finally, the sheep looks
up, framed by the picturesque landscape, embodying tranquility and the simple beauty of nature.
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Figure 15. Qualitative comparisons on CogVideoX-5b generators. The random seed has been fixed. Prompt: Gwen Stacy, with her
signature blonde hair tied back in a ponytail, sits in a cozy, sunlit room, engrossed in a thick, leather-bound book. She wears a casual yet
stylish outfit: a light blue sweater, dark jeans, and black ankle boots. The camera starts at her hands, delicately turning a page, revealing
her neatly painted nails. As the camera tilts up, it captures her focused expression, her eyes scanning the text with curiosity and intensity.
The warm sunlight filters through a nearby window, casting a soft glow on her face, highlighting her serene and studious demeanor. The
scene ends with a close-up of her thoughtful smile, suggesting a moment of discovery or reflection.
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Figure 16. Qualitative comparisons on CogVideoX-5b generators. The random seed has been fixed. Prompt: A charming boat with
a red and white hull sails leisurely along the serene Seine River, its gentle wake creating ripples in the water. The iconic Eiffel Tower
stands majestically in the background, framed by a clear blue sky and fluffy white clouds. As the camera zooms out, the scene expands
to reveal lush green trees lining the riverbanks, quaint Parisian buildings with their classic architecture, and pedestrians strolling along
the cobblestone pathways. The boat continues its tranquil journey, passing under elegant stone bridges adorned with ornate lampposts,
capturing the essence of a peaceful day in Paris.
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