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This appendix provides comprehensive details to supple-
ment our main work. Section A presents an in-depth discus-
sion of related studies. The parameterization of diffusion
models and their connection to score functions are recapped
in Section B, followed by the perspective of Score Distilla-
tion Sampling (SDS) to understand our DPoser regulariza-
tion in Section C.

Section D examines the runtime and computational over-
head introduced by DPoser, while Section E explores test-
time timestep scheduling across both pose and image do-
mains. The datasets used for training and evaluation are de-
tailed in Section F. Section G covers detailed experimental
setup including task-specific loss, evaluation metrics used
in each task and implementation of comparative methods.

Further evaluations of DPoser-X on additional tasks and
datasets are provided in Section H. Section I outlines the
training process for DPoser, whereas Section J discusses
extended optimization techniques. Section K outlines the
method’s limitations, presents failure cases, and suggests
avenues for future research. Lastly, Section L showcases
additional qualitative results.

A. Related Work

A.1. Human Pose Priors

Human body models like SMPL [41] and SMPL-X [48]
serve as powerful tools for parameterizing both pose and
shape, thereby offering a comprehensive framework for de-
scribing human gestures. Within the SMPL model, body
poses are represented using rotation matrices or joint an-
gles linked to a kinematic skeleton. Adjusting these param-
eters enables the representation of diverse human actions.
Nonetheless, feeding unrealistic poses into these models
can result in non-viable human figures, primarily because
plausible human poses are confined within a complex, high-
dimensional manifold due to biomechanical constraints.

* Equal contribution. † Corresponding authors.

Various strategies [1, 11, 23, 48, 59] have been put for-
ward to build human pose priors. Generative frameworks
like GMMs, VAEs [32], and Generative Adversarial Net-
works (GANs) [20] have shown promise in encapsulat-
ing the multifaceted pose distribution, facilitating advance-
ments in tasks like human mesh recovery [19, 29]. Further,
some studies have delved into conditional pose priors tai-
lored to specific tasks, incorporating extra information such
as image features [4, 51], 2D joint coordinates [8], or se-
quences of preceding poses [38, 52]. Our initiative leans
towards an unconditional pose prior without relying on ad-
ditional inputs like images or text, aiming for a versatile
application across various pose-related scenarios.

A.2. Diffusion Models for Pose-centric Tasks

Diffusion models [25, 55–57] have emerged as power-
ful tools for capturing intricate data distributions, align-
ing well with the demands of multi-hypothesis estimation
in ambiguous human poses. Notable works include Diff-
Pose [26], which employs a Graph Convolutional Network
(GCN) architecture conditioned on 2D pose sequences for
3D pose estimation by learned reverse process (i.e., genera-
tion). Similarly, DiffusionPose [51] and GFPose [8] employ
the generation-based pipeline but take different approaches
in conditioning. Further, ZeDO [28] concentrates on 2D-to-
3D pose lifting, while Diff-HMR [4] and DiffHand [35] ex-
plore estimating SMPL parameters and hand mesh vertices,
respectively. EgoWholeBody [62] and RoHM [66] focus on
refining noisy motion sequences via diffusion-based gener-
ation. BUDDI [46] stands out for using diffusion models to
capture the joint distribution of interacting individuals and
leveraging SDS loss [49, 61] for optimization during testing
phases.

While DPoser shares similar optimization implementa-
tion with BUDDI, it sets itself apart by introducing a wider
perspective of inverse problems and equipping an innova-
tive timestep scheduling strategy tailored to human poses.
Unlike other approaches [8, 26, 28, 51] that primarily fo-
cus on 3D location-based representation, DPoser takes on
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the more demanding task of modeling SMPL-based rota-
tion pose representation. Furthermore, DPoser-X improves
whole-body modeling with detailed hand and facial expres-
sions, making it a versatile choice for pose-centric tasks.

B. Parameterization of Score-based Diffusion
Models

In the seminal work by Song et al. [57], it is demonstrated
that both score-based generative models [56] and diffusion
probabilistic models [25] can be interpreted as discretized
versions of stochastic differential equations (SDEs) defined
by score functions. This unification allows the training ob-
jective to be interpreted either as learning a time-dependent
denoiser or as learning a sequence of score functions that
describe increasingly noisy versions of the data.

We begin by revisiting the training objective for score-
based models [56] to elucidate the link with diffusion mod-
els [25]. Consider the transition kernel of the forward dif-
fusion process p0t(xt|x0) = N (xt;αtx0, σ

2
t I). Our goal

is to learn score functions ∇xt
log pt(xt) through a neural

network sθ(xt; t), by minimizing the L2 loss as follows (we
omit the expectation operator for conciseness) :

E
[
w(t)||sθ(xt; t)−∇xt

log pt (xt) ||22
]
. (1)

Here, xt = αtx0 + σtϵ, where ϵ ∼ N (0, I).
Based on denoising score matching [60], we know the

minimizing objective Eq. (1) is equivalent to the following
tractable term:

E
[
w(t)||sθ(xt; t)−∇xt log p0t(xt|x0)||22

]
. (2)

To link this with the noise predictor ϵθ(xt; t) in diffusion
models, we can employ the reparameterization sθ(xt; t) =

− ϵθ(xt;t)
σt

. Then, Eq. (2) can be simplified as follows:

w(t)|| − ϵθ(xt; t)

σt
−∇xt

log p0t(xt | x0)||22

=w(t)|| − ϵθ(xt; t)

σt
+

(xt − αtx0)

σ2
t

||22

=w(t)|| − ϵθ(xt; t)

σt
+

σtϵ

σ2
t

)||22

=
w(t)

σ2
t

||ϵθ(xt; t)− ϵ)||22 (3)

The resulting form of Eq. (3) aligns precisely with the
noise prediction form of diffusion models [25] (refer to
Eq. (4) in the main text). This implies that by train-
ing ϵθ(xt; t) in a diffusion model context, we simultane-
ously get a handle on the score function, approximated as
∇xt

log pt(xt) ≈ − ϵθ(xt;t)
σt

.

C. View DPoser as Score Distillation Sampling
Interestingly, the gradient of DPoser (Eq. (10) in the main
text) coincides with Score Distillation Sampling (SDS) [49,
61], which can be interpreted as aiming to minimize the
following KL divergence:

KL
(
p0t (xt | x0) ∥ pSDEt (xt; θ)

)
, (4)

where pSDEt (xt; θ) denote the marginal distribution whose
score function is estimated by ϵθ(xt; t). For the specific
case where t → 0, this term encourages the Dirac distri-
bution δ(x0) (i.e., the optimized variable) to gravitate to-
ward the learned data distribution pSDE0 (x0; θ), while the
Gaussian perturbation like Eq. (4) softens the constraint.
Building on this understanding, we can borrow advanced
techniques from SDS—a rapidly evolving area ripe for
methodological innovations [10]. To extend this, we ex-
periment with a multi-step denoising strategy adapted from
HiFA [68], substituting our original one-step denoising pro-
cess. This alternative, however, yields suboptimal results
across most evaluation metrics, as demonstrated in Table S-
1. A plausible explanation could be that our proposed trun-
cated timestep scheduling effectively manages low noise
levels (i.e., small t), thus negating the need for more denois-
ing steps. In our main experiments, we keep the efficient
one-step denoiser.

D. Runtime Comparison
Diffusion models generally require iterative steps for grad-
ual denoising, making them less efficient than VAEs and
GANs in generation tasks. However, when applied to down-
stream optimization processes, DPoser introduces minimal
additional computational overhead. This is due to two key
factors: (1) DPoser regularization involves only a single-
step denoising at each optimization step, and (2) the stop-
gradient operator ensures that the regularization does not
require backpropagation through the trained network.

To assess DPoser’s efficiency, we benchmarked its run-
time against various prior models (including a baseline
without pose prior) for human mesh recovery across 100
images in a consistent execution environment. As shown
in Table S-2, incorporating DPoser results in only a mod-
est (10%) increase in optimization runtime compared to the
baseline. In contrast, GAN-S [11] incurs a significant com-
putational cost due to its required GAN-inversion phase,
which converts initial poses into their latent representations.

E. Analysis of Test-time Timestep Scheduling
During optimization, the selection of timestep is crucial for
downstream tasks. As discussed in Section 2.4, the key in-
formation of pose data emerges at small t values (t ≤ 0.3),
which serves as a coarse range. Moreover, the L2 loss for-
mat of our DPoser regularization gives an intuitive view of
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Strategy
Whole-body Mesh Recovery Body Pose Completion Motion Denoising

PA-MPVPE (all) ↓ PA-MPVPE (hands) ↓ MPVPE ↓ APD ↑ MPVPE ↓ MPJPE ↓

1 step 60.98 15.60 38.79/78.31/27.13 6.53 38.21 19.87
5 step 61.39 15.70 40.15/85.01/31.96 7.72 40.22 21.21
10 step 61.52 15.74 41.04/87.36/32.51 8.07 40.69 21.34

Table S-1. Ablation of different denoising steps in DPoser’s optimization.

w/o prior GMM [1] VPoser [48] Pose-NDF [59] GAN-S [11] DPoser

15.64 16.14 16.83 21.88 74.60 17.34

Table S-2. Runtime comparison (in seconds) of different prior
models for human mesh recovery on 100 images, evaluated us-
ing an RTX 3090Ti GPU.

Figure S-1. Visualization of the impact of different timestep values
in DPoser regularization. A larger t effectively corrects undesir-
able poses but may excessively alter well-posed inputs, resulting
in plausible yet unrelated poses. Conversely, a smaller t better pre-
serves the original pose but struggles to correct implausible ones.

Noise std [0.15, 0.05] [0.2, 0.05] [0.2, 0.1] [0.25, 0.1]

40 mm 19.83 19.87 21.68 22.14
100 mm 36.13 34.15 33.18 33.83

Table S-3. Ablation of timestep range for motion denoising on the
AMASS dataset [42]. MPJPE is reported as the metric.

the impact of timestep. As shown in Fig. S-1, while t is
small, since the adding noise and denoising path is short, the
denoised pose is close to the origin and the DPoser guidance
is weak. Specifically, considering the extreme case where
t → 0, in x̂0(t) =

xt−σtϵϕ(xt;t)
αt

, the coefficient σt → 0
while αt → 1, causing x̂0(t) to approach x0, which leads
to a near-zero DPoser loss. On the contrary, suitably large t
means strong DPoser guidance and can correct implausible
poses better. Thus, we tailor [tmax, tmin] intervals to spe-
cific tasks based on their noise scales. To verify this, we
conduct ablation of the timestep range on motion denois-
ing. As evidenced in Table S-3, to achieve the best perfor-
mance, larger t values are required for noisier inputs. Based
on the above analyses, we select task-specific timestep in-
tervals [tmax, tmin] as follows: [0.2, 0.05] for motion de-
noising (40 mm noise), [0.15, 0.05] for pose completion and

inverse kinematics, and [0.12, 0.08] for mesh recovery. All
the experiments, including body-only, hand-only, face-only,
and whole-body, share the same timestep hyperparameters
without more tuning.

It is also noteworthy that our truncated timestep schedul-
ing is designed for human poses and does not work well
on images. In image domains, the initial timesteps play
a crucial role in generating foundational perceptual con-
tent. In our study, we employed a 256x256 unconditional
diffusion model [13] trained on ImageNet [12] with varia-
tional diffusion sampling [43] for image inpainting. This
model employs 1000 discrete timesteps during training. We
compared standard scheduling (timesteps 990 to 0) with
truncated scheduling (timesteps 495 to 0), both using 100
steps. The results, shown in Fig. S-2, indicate that trun-
cation negatively affects image quality. While the stan-
dard approach preserved perceptual content, the truncated
method produced disjointed patches that were misaligned
with the original context. These results affirm that truncated
timestep scheduling excels in pose data where key informa-
tion emerges in later stages but falls short in image tasks
where early timesteps are essential. This scheduling is thus
bespoke to the characteristics of human poses and is un-
suitable for image processes that rely on the full diffusion
timeline for content fidelity.

F. Dataset Description
This section provides a detailed overview of the datasets
used in our experiments, categorized based on the body part
they focus on. We describe each dataset’s specific use case
along with the number of samples available for each dataset.

F.1. Body-only Dataset
AMASS The AMASS dataset [42] is a large-scale collec-
tion of high-quality 3D human body meshes derived from
multiple motion capture sources. It provides motion se-
quences and human poses in a SMPL-based format, cover-
ing a broad range of activities such as walking, sitting, danc-
ing, and running. Following the same splits as VPoser [48],
and after sampling to de-duplicate the data, we use approx-
imately 55 million body poses in the SMPL-X [48] format
to train our DPoser-body model. The test split consists of
54,000 body poses, which are used to evaluate model per-
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(a)

(b)

Figure S-2. Image inpainting using standard and truncated timestep scheduling. The process evolution is shown over iterations with the
middle row depicting the log-magnitude spectrum and the bottom row the phase spectrum. (a) The standard scheduling exhibits cohesive
restoration with detail fidelity. (b) The truncated scheduling results in detail-rich patches that are perceptually incongruent with the original
image context.

formance on tasks including body pose completion and mo-
tion denoising.
HPS The HPS dataset [21] contains over 300K synchro-
nized RGB images, paired with reference 3D poses and lo-
cations, captured from seven people interacting with large-
scale 3D scenes. The dataset includes motion sequences of
various activities such as exercising, reading, eating, lectur-
ing, using a computer, making coffee, and dancing. Fol-
lowing Pose-NDF [59], we use the HPS dataset to evaluate
the motion denoising task without training on it. After sam-
pling, we got 350 sequences, each consisting of 60 frames
for testing.

F.2. Hand-only Dataset
FreiHAND FreiHAND [70] is a large-scale dataset for 3D
hand pose estimation, focusing on single-hand poses. It in-
cludes 130,240 training samples (4×32560) and 3,960 eval-
uation samples. Each training hand pose is accompanied
by 4 RGB images, providing diverse data for training ro-
bust models. We use 32,560 hand poses, represented in the
MANO format [53], for training the DPoser-hand model.
The remaining 3,960 evaluation samples are used to assess
hand mesh recovery performance during testing.
DexYCB DexYCB [3] is a dataset for capturing 3D hand

poses during hand-object interactions, focusing on single-
hand poses. We use only the hand poses for training the
DPoser-hand model. The training set includes 407,000 sin-
gle hand poses.

HO3D HO3D [22] is a dataset that provides 3D annota-
tions for both hand poses and object interactions. Similar to
DexYCB, we utilize the hand poses for training the DPoser-
hand model. The training set contains 83,000 hand poses.

H2O The H2O dataset [33] provides 3D pose annotations
for two-hand and object interactions. For the purpose of
training DPoser-hand, we use only the right-hand poses.
The training set contains 58,000 hand poses.

ReInterHand ReInterHand [45] is a high-quality synthetic
dataset designed for 3D hand pose estimation, specifically
focusing on interacting hands. It includes annotations for
both hands. For training DPoser-hand, we flip the left-hand
pose as right-hand to unify the format. The dataset is split
into training, validation, and test sets with an 8:1:1 ratio.
We use approximately 186,000 hand poses for training, and
23,000 poses for testing. The test set is used to evaluate
hand inverse kinematics tasks.
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F.3. Face-only Dataset
MICA The MICA dataset [69] consists of eight smaller
datasets that were unified to represent about 2315 subjects
using the FLAME [36] model. It contains only shape geom-
etry. We use the MICA dataset to train the shape component
of DPoser-face, focusing on high-quality 3D face shapes.
WCPA WCPA [30] is a large-scale dataset focusing on 3D
face reconstruction under perspective projection. It contains
200 subjects and 356,640 training instances, with detailed
annotations for facial expressions. We use WCPA to train
the expression component of DPoser-face, with 1/10 of the
dataset reserved for testing. The test set is used to evalu-
ate face reconstruction, considering both shape and expres-
sions.
NOW NOW [54] is a widely-used benchmark for face re-
construction. It introduces standard evaluation metrics for
assessing the accuracy and robustness of 3D face recon-
struction methods, especially under variations in viewing
angle, lighting, and occlusions. The validation set contain-
ing 352 images is employed for our face reconstruction task.
We focus on the non-metrical evaluation of face shape, as
the ground truth (GT) only includes shape. As in previous
works such as DECA [17], expressions are set to zero in the
FLAME [36] model to obtain a neutral face mesh for final
evaluation.

F.4. Whole-body Dataset
BEAT2 BEAT2 [39] is a holistic co-speech dataset that
combines the MoShed SMPL-X [48] body with FLAME
head parameters. It refines the modeling of head, neck,
and finger movements, providing high-quality 3D motion-
captured data. After de-duplication, we have 1.48 million
whole-body poses for training DPoser-X, and the test set
contains 172,000 whole-body poses used for whole-body
pose completion.
GRAB GRAB [58] is a dataset containing full 3D shape and
pose sequences of 10 subjects interacting with 51 everyday
objects of varying shapes and sizes. We use this dataset for
training DPoser-X, with 391,000 whole-body poses. The
data helps train the model for whole-body mesh recovery
during grasping actions.
ARCTIC ARCTIC [15] is a dataset focused on two-hand
object manipulation, with 2.1 million video frames paired
with 3D hand and object meshes. After de-duplication, we
have 77,000 whole-body poses for training DPoser-X. The
validation set, which contains 10,000 whole-body poses, is
used for testing whole-body mesh recovery and pose com-
pletion. Note that the face expressions are not annotated, so
we set models’ output expressions as zeros for evaluation.
Face-related metrics in whole-body mesh recovery are only
influenced by the human shape.
EgoBody EgoBody [65] is a large-scale dataset that cap-
tures 3D human motions during social interactions in 3D

scenes. It provides SMPL-X [48] annotations for 3D whole-
body pose, shape, and motion for both the interactee and
the camera wearer. The training set contains 38,896 in-
stances of whole-body poses (x2 for each subject), and the
test set contains 24,665 instances. The test set is used for
the whole-body pose completion task.
Fit3D Fit3D [18] is a dataset with over 3 million images and
corresponding 3D human shape and motion capture ground
truth data, covering 37 exercises performed by instructors
and trainees. We take the subject s04 which consists of
612 images after sampling, for whole-body mesh recovery
tasks to test DPoser-X’s generalization, without training the
model on this dataset.
EHF EHF [48] is a curated dataset comprising 100 images
with pseudo whole-body poses. Following Pose-NDF [59],
we use this dataset to evaluate body mesh recovery perfor-
mance, specifically calculating PA-MPJPE for body joints.

G. Experimental Details
In this section, we provide detailed descriptions of the ex-
perimental setups and specific loss functions for various
tasks. These tasks include pose completion, motion de-
noising, inverse kinematics, face reconstruction, hand mesh
recovery, and whole-body mesh recovery. In addition, we
explain the evaluation metrics used in each task and imple-
mentation details of comparative methods.

G.1. Pose Completion
For partial observations y, the measurement operator A is
modeled as a known mask matrix M ∈ Rd×n. Based on
our optimization framework denoted in Alg. 1, we define
the task-specific loss, Lcomp, as follows:

Lcomp = ||Mx0 − y||22. (5)

Here, x0 denotes the complete body pose θ we try to re-
cover, where the unseen parts are initialized as random
noise. In the following ablated studies, if not specified, the
evaluation of the body pose completion is performed using
10 hypotheses on the AMASS dataset [42] with left leg oc-
clusion.

G.2. Motion Denoising (Noisy Input)
Adhering to Pose-NDF settings [59], we aim to refine noisy
joint positions J t

obs over N frames to obtain clean poses θt,
initialized from mean poses in SMPL with small noise. We
formulate the task-specific loss combining an observation
fidelity term Lobs and a temporal consistency term Ltemp:

Lobs =

N−1∑
t=0

||MJ(θ
t, β0)− J t

obs||22, (6)

Ltemp =

N−1∑
t=1

||MJ(θ
t−1, β0)−MJ(θ

t, β0)||22, (7)
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where MJ denotes the 3D joint positions regressed from
SMPL [41] and β0 is the constant mean shape parameters.

G.3. Motion Denoising (Partial Input)
This task focuses on reconstructing clean poses, θt, from
partially observed joint positions, J t

obs, across N frames,
employing a known mask matrix to identify visible joints.
The optimization objective mirrors that of motion denoising
(Section G.2), but incorporates a mask in Eq. (6) to specifi-
cally target visible parts, ensuring that only these segments
guide the recovery process.

G.4. Inverse Kinematics
Inverse kinematics (IK) aims to estimate clean poses from
noisy or partially observed 3D joint positions, similar to the
motion denoising task. The key difference in the implemen-
tation is that the inputs are single-frame data, meaning the
temporal consistency term Ltemp is not required.

For inverse kinematics applied to hand poses, we opti-
mize only the hand poses while keeping the hand shape pa-
rameters fixed. This simplifies the optimization, focusing
solely on pose adjustments. For the face, we optimize both
the face expression and shape parameters, as face-related
tasks require accurate modeling of both shape and dynamic
expressions. In all cases, we employ a similar optimization
framework as in the motion denoising task, using only the
fidelity loss for observed 3D joints.

G.5. Face Reconstruction
Reconstructing human faces using only 2D keypoints is
challenging and typically insufficient for high-quality re-
constructions. To address this, we utilize the photometric
optimization approach described in [16] to fit a textured
FLAME model [36]. The optimization aims to refine the
face shape and expression parameters, as well as adjust the
appearance and lighting parameters for the face rendering.
We use a combination of two key loss functions: the pho-
tometric loss (L1-loss between rendered and target images)
and the reprojection loss (for 2D face keypoints).

We observe that face shape plays a crucial role in tasks
like face reconstruction. To this end, DPoser-face is de-
signed to separately model face shape and expression.
Given that these two components (shape and expression) are
largely independent, we train the face shape and expression
models separately using the WCPA [30] and MICA [69]
datasets, respectively. For face-only tasks such as face re-
construction, DPoser regularization is applied to both the
face shape and expression models. It is important to note
that only the expression component of DPoser-face con-
tributes to the broader DPoser-X framework, with the shape
component being reserved for face-specific tasks. For a fair
comparison, we implement the same strategy for training
the VPoser-face model.

G.6. Hand Mesh Recovery
For hand mesh recovery, we optimize the hand poses using
the MANO model [53] instead of the SMPL model. Similar
to the body mesh recovery task, we employ a reprojection
loss based on 2D hand keypoints. In addition to using our
DPoser loss for plausible hand poses, we also employ the
L2 prior for hand shape, similar to Eq. (11) in the main text,
to maintain natural hand geometry.

G.7. Whole-body Mesh Recovery
Whole-body mesh recovery shares similarities with body
mesh recovery (as discussed in Section 2.5) but addition-
ally incorporates the face and hands into the optimization.
The goal is to recover the whole-body poses θ (including
body, hands, and face) and shape parameters β by optimiz-
ing a reprojection loss based on whole-body 2D keypoints.
A distinguishing feature is the inclusion of two root-relative
reprojection losses, one for the hands and another for the
face, to refine local poses. Specifically, the wrists for hands
and the mouth for the face are chosen as the root, and the
root coordinates are subtracted before calculating the repro-
jection losses. This ensures that the hand and face poses
are localized relative to the body, improving the accuracy of
hand and facial mesh recovery.

G.8. Evaluation Metrics
For comprehensive assessment across various tasks, follow-
ing recent works like NRDF [23] and SMPLer-X [2], we
adopt task-specific metrics:
• Pose Generation: Diversity and fidelity are evaluated us-

ing Average Pairwise Distance (APD) and dNN [23], re-
spectively. dNN measures the distance between the gen-
erated pose and its nearest neighbor from the training
data. We also report the common metrics for generative
models, including FID [24] (distribution similarity), Pre-
cision [34] (fidelity), and Recall [34] (diversity).

• Human Mesh Recovery: Procrustes-aligned Mean Per-
Vertex Position Error (PA-MPJPE) and Procrustes-
aligned Mean Per-Joint Position Error (PA-MPVPE) mea-
sures the accuracy of recovered human meshes.

• Multi-hypothesis Pose Completion: MPVPE and APD on
masked parts across multiple hypotheses measure solu-
tion accuracy and diversity, respectively.

• Motion Denoising & Inverse Kinematics: Both MPJPE
and MPVPE are calculated to assess the performance.

All errors are reported in millimeter units.

G.9. Implementation of Comparative Methods
In pose generation experiments, we employ standard
sampling techniques for generative models, including
GMM [1], VPoser (VAE) [48], and GAN-S (GAN) [11].
For Pose-NDF [59] and NRDF [23], we reproduce their pro-
jection algorithms using their official repositories. For other
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tasks during testing, to ensure a fair comparison, we imple-
ment all pose priors within the same optimization frame-
work—using identical task-specific loss functions and opti-
mization iterations—while tuning hyperparameters such as
loss weights for each method.

VPoser and GAN-S function as pose priors due to their
learned meaningful latent representations. We optimize the
pose latents for both methods. Given VPoser’s Gaussian
assumption, it naturally incorporates L2 regularization on
the latent pose [48]. However, we observe that applying
spherical loss to the latents of GAN-S [11] degrades hu-
man mesh recovery performance. Therefore, we use only
GAN-S’s generator for decoding without imposing addi-
tional constraints on the pose latents. Both NDF [59] and
NRDF [23] directly optimize pose rotation representations
by minimizing the predicted distance between the current
pose and their learned plausible pose fields. We implement
these methods using their official code and model weights.
Since GAN-S does not provide pre-trained models, we train
it from scratch on the same datasets as our DPoser. Addi-
tionally, for hand, face, and whole-body models, we train
the comparative methods ourselves.

H. Additional Experiments
In this section, we present a series of additional experiments
that further demonstrate the efficacy of DPoser-X across
various tasks. These experiments cover body mesh recov-
ery, body pose completion, motion denoising, hand/face
generation, hand/face inverse kinematics, face reconstruc-
tion, and whole-body mesh recovery, with a focus on differ-
ent input types and datasets.

H.1. Body Mesh recovery
In addition to the priors compared in the main text, we eval-
uate DPoser against two recent state-of-the-art, generation-
based methods: GFPose [8] and HuProSO3 [14]. Unlike
optimization-based priors, these methods are designed to
produce multiple, diverse hypotheses for a given input.

We report the results for the Human Mesh Recov-
ery (HMR) task on the EHF dataset [48] in Table S-
4. The comparison is conducted with both a single hy-
pothesis (hypotheses num=1) and multiple hypotheses (hy-
potheses num=10), reporting the minimum PA-MPJPE and
MPJPE. The results clearly show that while GFPose and
HuProSO3 can generate diverse potential poses, our DPoser
achieves significantly higher accuracy (i.e., lower error) in
both evaluation settings. This suggests that DPoser provides
a more precise and reliable pose prior for this task.

H.2. Body Pose Completion
In practical scenarios, HMR algorithms often grapple with
occlusions leading to incomplete 3D pose estimates. In this
context, the task is to recover full 3D poses from partially

Methods hypotheses num=1 hypotheses num=10

GFPose [8] 68.64/89.88 62.80/83.39
HuProSO3 [14] 72.00/104.52 57.42/84.21
DPoser (ours) 56.05/79.82 53.28/76.53

Table S-4. Comparison with generation-based methods on the
HMR task using the EHF dataset [48]. We report the minimum
PA-MPJPE/MPJPE across multiple hypotheses.

observed data, initializing the occluded parts with noise.
Our DPoser model is employed to refine these initially im-
plausible poses into feasible ones, utilizing an L2 loss on
the visible parts to ensure data consistency. In parallel, we
employ a comparable optimization strategy for both Pose-
NDF [59] and VPoser [48]. As a task-specific baseline, we
adapt the original VPoser model into CVPoser by incorpo-
rating conditional inputs within its VAE framework [32] for
end-to-end training and conditional sampling. The comple-
tion experiment is conducted on the AMASS dataset [42]
with occlusion of various body parts.

Given the uncertainties in this task, we generate multi-
ple hypotheses and evaluate them using minimum, mean,
and standard deviation errors against the ground truth. We
calculate APD across solutions to assess diversity. As illus-
trated in Table S-5, DPoser exhibits superior performance
across different occlusion scenarios compared to existing
pose priors and even the task-specific CVPoser, highlight-
ing its effectiveness in pose completion. The qualitative
evaluations are presented in Fig. S-3. Here, we observe that
DPoser can generate a multitude of plausible poses, a capa-
bility lacking in VPoser [48]. Pose-NDF [59], meanwhile,
struggles with generalizing to unseen noisy poses and mak-
ing plausible adjustments from the mean pose initialization.

H.3. Motion Denoising (Noisy Input)
To further evaluate DPoser’s performance in motion denois-
ing, we extend our analysis to scenarios with varying noise
levels. In complement to the results presented in Table 3
of our main text, we conduct an in-depth examination that
spans a broader range of noise conditions. The extended re-
sults, detailed in Table S-6, showcase DPoser’s exceptional
performance against state-of-the-art (SOTA) pose priors, es-
pecially under high noise conditions, manifesting DPoser’s
resilience to noise.

H.4. Motion Denoising (Partial Input)
We next assess the performance of our model in scenar-
ios involving partial input using the AMASS dataset [42].
Two types of occlusions were considered: legs and left arm.
The quantitative results of these experiments are presented
in Table S-7, while visual examples can be found in Sec-
tion L. Errors (in cm) are evaluated in terms of MPJPE
across visible (Vis.), occluded (Occ.), and all joints, along
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Methods
Occ. left leg Occ. legs Occ. arms Occ. torso

MPVPE ↓ APD ↑ MPVPE ↓ APD ↑ MPVPE ↓ APD ↑ MPVPE ↓ APD ↑

Pose-NDF [59] (S = 1) 168.61 NAN 169.92 NAN 261.11 NAN 115.03 NAN
Pose-NDF (S = 5) 157.62/168.49/7.94 1.95 162.30/169.94/5.54 1.96 254.97/261.01/4.38 1.22 108.07/114.98/4.98 0.93
Pose-NDF (S = 10) 154.21/168.45/8.66 1.95 159.75/169.86/6.12 1.97 252.90/260.94/4.81 1.20 105.87/114.97/5.43 0.93
VPoser [48] (S = 1) 200.23 NAN 221.21 NAN 206.83 NAN 58.66 NAN
VPoser (S = 5) 187.38/200.73/10.52 2.38 201.70/221.16/14.57 5.49 191.27/206.55/11.54 4.06 49.88/58.67/6.71 1.59
VPoser (S = 10) 182.31/200.51/12.20 2.41 195.76/221.34/16.40 5.44 186.55/206.72/12.91 4.08 47.31/58.71/7.38 1.56
CVPoser† (S = 10) 113.48/128.04/10.36 1.91 121.00/134.35/10.17 2.43 153.12/162.82/5.58 1.08 45.16/51.23/4.32 0.57

DPoser (S = 1) 78.78 NAN 103.12 NAN 104.59 NAN 44.60 NAN
DPoser (S = 5) 46.23/78.13/24.96 6.58 72.37/102.73/23.05 7.72 74.32/105.70/24.15 5.67 27.47/44.63/13.26 2.19
DPoser (S = 10) 38.79/78.31/27.13 6.53 63.65/102.46/25.39 7.75 64.72/104.94/26.44 5.69 22.63/44.60/14.65 2.21

Table S-5. Performance metrics (min/mean/std of MPVPE and APD) for body pose completion on the AMASS dataset [42] under varying
occlusion scenarios. S denotes the number of hypotheses. † Task-specific baseline trained with partial poses as conditional input.

DPoser (ours)VPoser GTPose-NDF

Figure S-3. Visual comparisons of body pose completion. Three hypotheses are drawn for each method. DPoser uniquely offers multiple
plausible solutions for partial poses, a scenario where competitors often struggle due to limited generalization.

Methods
AMASS [42] HPS [21]

20mm 100mm 20mm 100mm

w/o prior 15.33 51.48 16.26 50.87
VPoser [48] 15.20 49.10 17.24 46.69
Pose-NDF [59] 13.84 46.10 15.62 47.50
DPoser 13.64 33.18 13.45 35.32

Table S-6. Performance comparison of motion denoising under
varying noise scales. MPJPE is reported afters denoising.

with MPVPE for all vertices.
In the leg occlusion scenario, where the AMASS dataset

primarily consists of straight poses, the lack of diversity
allows for reasonable results even without incorporating a
pose prior. In this case, the optimization starts from an ini-
tial point that closely matches these common poses. How-
ever, while VPoser’s mean-centered approach struggles to
faithfully replicate visible areas, DPoser accurately handles
the visible portions and guides the reconstruction of oc-

Methods Occlusion
MPJPE MPVPE

Vis. Occ. All All

w/o prior legs 0.26 14.72 5.52 5.45
VPoser [48] legs 1.75 14.29 6.31 7.38
Pose-NDF [59] legs 0.25 15.71 5.87 5.64
DPoser legs 0.28 12.24 4.63 3.65

w/o prior left arm 0.26 24.87 4.74 9.91
VPoser [48] left arm 1.21 13.23 3.40 7.68
Pose-NDF [59] left arm 0.25 17.70 3.42 7.86
DPoser left arm 0.27 7.80 1.64 3.81

Table S-7. Comparative analysis of methods for motion denois-
ing with different occlusions (legs or left arm) on the AMASS
dataset [42].

cluded parts, yielding more realistic results. In contrast,
Pose-NDF does not effectively enhance the occluded re-
gions. For left arm occlusions, which involve more varied
movements, DPoser markedly surpasses other methods, un-
derlining its adaptability and precision in handling diverse
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Methods APD ↑ FID ↓ Prec. ↑ Rec. ↑ dNN ↓

VPoser [48] 1.99 0.21 0.68 0.65 1.85
NRDF [23] 1.76 5.20 0.17 0.65 5.37
DPoser-hand 2.36 0.01 0.82 0.87 1.45

Table S-8. Quantitative evaluation of hand pose generation.

motion patterns.

H.5. Hand Pose Generation
We evaluate the generated hand poses based on their di-
versity and realism. As shown in Table S-8, DPoser pro-
duces a strong combination of both, outperforming meth-
ods like VPoser [48] and NRDF [23]. Specifically, NRDF
shows poor realism, reflected in high FID and dNN scores.
VPoser, while achieving moderate precision, suffers from
limited diversity, as indicated by its low APD. See Fig. S-
12 visualization comparison.

H.6. Hand Mesh Recovery
To evaluate DPoser’s ability to recover hand meshes, we
test its performance on the FreiHAND dataset [70] un-
der two initialization strategies: mean poses and the
Hand4Whole [44] prediction poses. The results, detailed in
Table S-9 and visually represented in Section L (Fig. S-15
and Fig. S-14), show DPoser’s superior performance across
various metrics and initialization settings.

DPoser consistently outperforms competing methods,
such as VPoser [48] and NRDF [23], achieving the low-
est PA-MPJPE and PA-MPVPE values. For example, when
using keypoints detected by RTMPose [27], DPoser re-
duces PA-MPJPE by 20% compared to VPoser. More-
over, the performance is further enhanced when using
Hand4Whole [44] initialization, highlighting DPoser’s abil-
ity to refine results from existing SOTA mesh recovery mod-
els. In contrast, methods like the L2 prior and VPoser,
which rely on mean-centered priors, fail to match the qual-
ity of the initializations, producing poorer results. Addi-
tionally, DPoser demonstrates significant advantages over
NRDF in modeling hand pose distributions, offering more
reliable guidance in mesh recovery. By leveraging ground
truth (GT) keypoints, DPoser consistently recovers natural
hand meshes that align well with observed 2D keypoints.

H.7. Hand Inverse Kinematics (Noisy Input)
For hand inverse kinematics, we extend our experiments to
noisy settings using the ReInterHand dataset [45]. Table S-
10 shows that DPoser consistently outperforms alternative
methods across different noise levels (2mm, 5mm, 10mm),
achieving the lowest MPVPE and MPJPE. While methods
like the L2 prior and VPoser [48] perform competitively at
lower noise levels, their accuracy deteriorates significantly

as noise increases. In contrast, DPoser maintains both sta-
bility and precision, showcasing its superior ability to han-
dle noisy input and recover plausible hand poses even under
challenging conditions.

H.8. Face Generation
We conduct the face generation experiments for the shape
and expression separately since they are uncorrelated at-
trbutes. As detailed in Table S-11, DPoser outperforms
VPoser [48] in terms of FID, achieving values of 5.331 for
shape and 0.156 for expression, which highlights DPoser’s
superior ability to model the distribution of face shapes
and expressions. While VPoser achieves higher precision
scores, its recall values are considerably lower, indicating a
lack of variability in the generated samples. This observa-
tion is further corroborated by qualitative results shown in
Fig. S-4, which demonstrate DPoser’s ability to generate a
wide variety of realistic face shapes and expressions. Com-
pared to VPoser, DPoser captures a broader range of subtle
variations, especially in expressions, while maintaining fi-
delity.

H.9. Face Reconstruction
For face reconstruction, along with the NOW beach-
mark [54], we test on the WCPA [30] dataset, which eval-
uates both face shape and expression. As shown in Ta-
ble S-12, DPoser consistently outperforms other methods.
It achieves the lowest PA-MPVPE and PA-MPJPE errors
across all configurations, with a notable reduction in errors
for both overall and side-view cases. When combined with
EMOCA [9] initialization, DPoser further refines the recon-
struction quality, reducing the mean PA-MPVPE error to
3.10 mmm compared to 3.58 mm for EMOCA alone.

Qualitative visualizations in Fig. S-17 illustrate DPoser’s
ability to reconstruct detailed and realistic face meshes,
even in challenging scenarios involving variations in side-
view poses and complex expressions. While other methods
often struggle to generalize across such cases, DPoser re-
mains robust and highly accurate, demonstrating its capa-
bility to handle the full diversity of facial shapes and ex-
pressions in real-world conditions.

H.10. Face Inverse Kinematics
To evaluate DPoser’s robustness in face inverse kinematics,
we conduct experiments under various noise levels and oc-
clusion scenarios using the WCPA dataset [30]. The results
in Table S-13 demonstrate that DPoser consistently achieves
the lowest MPVPE and MPJPE errors across all tested con-
ditions. Notably, DPoser retains its strong performance
even under extreme noise conditions, whereas VPoser [48]
experiences significant degradation as noise levels increase.
Qualitative results, visualized in Fig. S-16, further confirm
DPoser’s ability to reconstruct realistic and aligned facial
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Methods PA-MPJPE ↓ PA-MPVPE ↓ F@5 ↑ F@15 ↑
w/o prior 17.71/16.12 18.40/17.04 0.396/0.446 0.875/0.895
L2 prior 12.87/11.49 12.71/11.59 0.512/0.533 0.924/0.927
VPoser [48] 12.31/10.62 12.23/10.91 0.524/0.609 0.931/0.943
NRDF [23] 13.19/11.04 13.39/11.59 0.469/0.554 0.914/0.937
DPoser-hand 10.71/8.68 10.48/8.70 0.574/0.679 0.947/0.963

hand4whole 8.50 7.81 0.651 0.97
+ w/o prior 9.13/6.04 8.97/6.06 0.609/0.749 0.965/0.985
+ L2 prior 9.91/7.16 9.69/7.11 0.568/0.686 0.953/0.974
+ VPoser [48] 9.13/6.42 9.04/6.55 0.605/0.717 0.964/0.981
+ NRDF [23] 9.00/6.15 8.99/6.29 0.595/0.726 0.964/0.983
+ DPoser-hand 7.96/5.36 7.69/5.20 0.663/0.793 0.973/0.990

Table S-9. Performance evaluation of hand mesh recovery on the FreiHAND dataset [70]. Results are reported using 2D keypoints detected
by RTMPose [27] / ground truth.

Methods
2mm 5mm 10mm

MPVPE ↓ MPJPE ↓ MPVPE ↓ MPJPE ↓ MPVPE ↓ MPJPE ↓

No prior 3.95 1.50 5.82 3.46 8.62 5.97
L2 prior 2.10 1.43 4.06 2.92 6.06 4.27
VPoser [48] 2.47 1.36 4.15 2.85 6.32 4.40
NRDF [23] 2.67 1.40 4.57 3.11 7.18 5.06
DPoser-hand 1.71 1.17 3.30 2.39 5.39 3.87

Table S-10. Performance of hand inverse kinematics on the ReInterHand dataset [45] under noisy settings.

Methods FID ↓ Prec. ↑ Rec. ↑ dNN ↓
VPoser [48] (shape) 31.91 0.984 0.105 6.52
DPoser-face (shape) 5.331 0.689 0.396 8.29

VPoser [48] (expression) 0.888 0.993 0.019 0.79
DPoser-face (expression) 0.156 0.818 0.697 1.01

Table S-11. Quantitative evaluation for face generation.

Methods all side-view

w/o prior 3.67/4.19 3.77/4.46
L2 prior 3.56/3.90 3.58/4.01
VPoser [48] 3.59/4.01 3.62/4.13
DPoser-face 3.34/3.65 3.32/3.61

EMOCA [9] 3.58/4.07 3.78/4.43
+ w/o prior 3.49/3.88 3.92/4.56
+ L2 prior 3.49/3.82 3.68/4.28
+ VPoser [48] 3.39/3.65 3.56/4.05
+ DPoser-face 3.10/3.54 3.16/3.72

Table S-12. Face reconstruction performance (PA-MPVPE/PA-
MPJPE) on the WCPA dataset [30].

details under noisy and occluded conditions.

H.11. Whole-body Mesh Recovery

We extend our evaluation of whole-body mesh recovery to
include the Fit3D dataset [18], in addition to the compara-
tive results on ARCTIC [15]. For this evaluation, we com-
pare DPoser-X with VPoser-X [48] and the GMM baseline,
which utilizes a Gaussian Mixture Model (GMM) [1] for
body poses and an L2 prior for hands and face.

As shown in Table S-14, DPoser-X outperforms both
VPoser-X [48] and GMM [1] across most metrics, for both
hands and the entire body. However, we observe that the
L2-prior baseline performs better than DPoser-X in terms
of PA-MPVPE on the face. We attribute this result to the
low-resolution images in the Fit3D dataset, where the face
is depicted with limited pixel density and the 2D keypoints
are less expressive. In this case, the neutral face produced
by the L2 prior is more likely to yield better results due to
the lack of detailed facial features in the input. Nonethe-
less, DPoser-X still outperforms other methods in handling
the full-body mesh recovery, showing its robustness in both
body and hand mesh reconstruction.
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(a) VPoser

(b) DPoser (ours)

Figure S-4. Visualization of face generation results. Top row shows varying face shapes; bottom row shows varying expressions.

Methods 1mm Noise 2mm Noise 5mm Noise Half Face Occ.

MPVPE ↓ MPJPE ↓ MPVPE ↓ MPJPE ↓ MPVPE ↓ MPJPE ↓ MPVPE ↓ MPJPE ↓
w/o prior 1.460 0.878 2.230 1.702 4.701 4.028 0.752 0.632
L2 prior 1.121 0.865 1.626 1.288 2.570 2.344 0.698 0.512
VPoser [48] 1.153 0.803 1.688 1.480 2.716 2.688 0.671 0.361
DPoser-face 0.784 0.584 1.098 0.963 1.902 1.936 0.427 0.228

Table S-13. Performance of face inverse kinematics on the WCPA dataset [30] under noisy and occlusion settings.

Methods
PA-MPVPE↓ PA-MPJPE↓

All Hands Face Body

w/o prior 89.72 23.51 7.26 91.18
GMM [1] & L2 prior 86.95 18.22 5.38 83.58
VPoser-X [48] 81.96 17.59 6.37 86.50
DPoser-X 70.91 15.83 5.27 74.33

SMPLerX 25.49 18.89 2.85 28.30
+ w/o prior 24.72 11.92 2.78 22.98
+ GMM [1] & L2 prior 24.28 11.09 2.58 22.95
+ VPoser-X [48] 24.41 10.21 2.65 23.03
+ DPoser-X 23.20 8.91 2.62 21.22

Table S-14. Whole-body mesh recovery results on the Fit3d
dataset [18].

I. Ablated DPoser’s Training

This section dissects the impact of different rotation repre-
sentations and normalization techniques on DPoser’s per-
formance. The ablation of training experiments is con-
ducted for the DPoser-body model trained on AMASS [42].

Initially, we examine axis-angle representation, comparing
various normalization strategies: min-max scaling, z-score
normalization, and no normalization. Our findings, sum-
marized in Table S-15, indicate that z-score normalization
is generally the most effective. Subsequently, using this op-
timal normalization, we explore 6D rotations [67] as an al-
ternative. As evidenced by Table S-16, axis-angle represen-
tation offers superior performance. This preference can be
attributed to the effective modeling capabilities of diffusion
models, which do not benefit much from a more continuous
data representation.

Inspired by HuMoR [52], we experiment with integrat-
ing the SMPL body model [41] as a regularization term dur-
ing training. Alongside the prediction of additive noise, as
outlined in Eq. (4) in the main text, we employ a 10-step
DDIM sampler [55] to recover a “clean” version of the pose,
denoted as x̃0, from the diffused xt. The regularization loss
aims to minimize the discrepancy between the original and
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Normalization
Body Mesh Recovery Body Pose Completion Motion Denoising

PA-MPJPE ↓ MPJPE (S = 10) ↓ MPVPE ↓ MPJPE ↓

w/o norm 57.88 45.37/102.28/41.08 44.82 24.04
min-max 59.17 47.41/107.00/43.42 42.70 21.29
z-score 56.49 34.37/72.47/26.32 38.57 20.24

Table S-15. Comparative performance of normalization methods using axis-angle rotation representation across multiple tasks.

Representation
Body Mesh Recovery Body Pose Completion Motion Denoising

PA-MPJPE ↓ MPJPE (S = 10) ↓ MPVPE ↓ MPJPE ↓

axis-angle 56.05 34.76/72.41/26.09 38.21 19.87
6D rotations 57.54 40.89/81.43/27.31 38.44 20.12

Table S-16. Comparative performance of rotation representations using z-score normalization across multiple tasks.
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Figure S-5. MPJPE evolution in DPoser training with different
regularization loss settings for body pose completion, assessed on
AMASS [42] with 10 hypotheses under legs occlusion scenarios.

recovered poses under the SMPL body model M :

Lreg = ||MJ(x̃0, β0)−MJ(x0, β0)||22
+ ||MV (x̃0, β0)−MV (x0, β0)||22. (8)

Here, β0 represents the mean shape parameters in SMPL.
To account for denoising errors, we scale the regularization
loss by log(1 + αt

σt
), thereby increasing the weight for sam-

ples with smaller t values (less noise).
Fig. S-5 visualizes the impact of this regularization on

MPJPE during the training, specifically for pose completion
tasks with occlusion of both legs. We observe that weighted
regularization offers slight performance gains in the early
training process, while the absence of weighting introduces
instability and deterioration in results. Despite these in-
sights, the computational cost of incorporating the SMPL
model—especially for our large batch size of 1280—makes

Steps Blocks Hidden Dim HMR (PA-MPJPE) Runtime (s)

500 2 1024 56.05 17.34

250 2 1024 56.53 8.44
1000 2 1024 55.74 34.11
500 4 1024 56.47 18.72
500 2 2048 56.67 19.12

Table S-17. Ablation of DPoser’s architecture and optimization
steps for the HMR task.

the training approximately 8 times slower. Therefore, we
opted not to include this regularization in our main experi-
ments.

We ablate the architectural hyperparameters of DPoser-
body and the number of optimization steps on the HMR
task, with results shown in Table S-17. Our findings in-
dicate that a more complex architecture (i.e., 4 blocks or
a 2048 hidden dimension) does not improve accuracy. Re-
garding the optimization, increasing the steps to 1000 offers
the best accuracy (55.74 PA-MPJPE) but at a high compu-
tational cost (34.11s), while 250 steps are fastest but less
accurate. Based on this analysis, we adopt the configura-
tion of 500 steps, 2 blocks, and a 1024 hidden dimension
for our experiments, as it provides a solid trade-off between
accuracy and runtime efficiency.

J. Extended DPoser’s Optimization

In addressing pose-centric tasks as inverse problems, we
propose a versatile optimization framework, which em-
ploys variational diffusion sampling as its foundational
approach [43]. Our exploration extends to an array of
diffusion-based methodologies for solving these complex
inverse problems. Among the techniques considered are
ScoreSDE [57], MCG [6], and DPS [5]. These meth-
ods augment standard generative processes with observa-

12



Methods Occ. left leg Occ. legs Occ. arms Occ. torso

ScoreSDE [57] 48.73/106.32/41.30 74.68/128.32/37.27 66.89/127.86/48.15 16.69/34.54/12.21
DPS [5] 40.51/104.32/54.57 64.26/113.46/33.71 60.63/119.85/42.78 15.10/33.90/13.27
MCG [6] 49.04/106.37/41.07 74.90/128.53/37.40 66.17/127.72/48.15 16.69/34.66/12.23
DPoser 35.37/74.01/26.47 59.25/96.77/24.55 51.27/81.76/20.04 13.95/28.57/9.85

Table S-18. Comparative evaluation of diffusion-based solvers for body pose completion on the AMASS dataset [42]. The min/mean/std
of MPJPE are reported (hypotheses number S = 10).

tional data, either by employing gradient-based guidance
or back-projection techniques. We compare these meth-
ods with our DPoser for body pose completion tasks. Our
findings, captured in Table S-18, reveal that DPoser out-
performs the competitors under most occlusion conditions.
Consequently, DPoser emerges not merely as a universally
applicable solution to pose-related tasks, but also as an ex-
ceptionally efficient one.

It is worth mentioning that methods rooted in gener-
ative frameworks [5, 6, 31, 57] can pose challenges for
broader applicability in pose-centric tasks. For instance,
in blind inverse problems—certain parameters in A (e.g.,
camera models in HMR) are unknown—generative meth-
ods are less straightforward to implement. ZeDO [28], a
recent study focusing on the 2D-3D lifting task, adopts
the ScoreSDE [57] framework and refines camera trans-
lations by solving an optimization sub-problem after each
generative step. However, directly porting this strategy to
HMR is non-trivial, owing to the added complexity of body
shape parameter optimization—a feature currently absent
in our DPoser model. Although some state-of-the-art tech-
niques [7, 47] offer solutions by jointly modeling operator
A and data distributions, a full-fledged discussion on this
subject is beyond this paper’s purview and remains an open
question for future work.

K. Limitation and future work

A primary limitation of our work is the dependency on the
training data’s distribution. Our body pose prior is trained
on the AMASS dataset [42], which, while diverse in com-
mon daily actions, contains limited examples of challeng-
ing or extreme poses like those found in yoga. This data
imbalance leads to two main issues. First, the learned prior
is inherently biased towards common standing poses. Sec-
ond, when confronted with out-of-distribution inputs, as il-
lustrated in Fig. S-6, the prior may offer limited or even
incorrect guidance. This problem is often exacerbated by
the failure of off-the-shelf 2D keypoint detectors like ViT-
Pose [64] to produce accurate keypoints for such complex
images, which in turn misguides the optimization.

Future work could address these data-driven limitations
in several ways. To mitigate the action imbalance, tech-

Images Keypoints DPoser-X

Figure S-6. Failure cases of our method on challenging yoga
poses. Inaccuracies in the estimated 2D keypoints (middle col-
umn), combined with our model’s limited exposure to such out-
of-distribution poses during training, lead to flawed 3D mesh re-
constructions (right column).

niques like clustering motions with action labels [50] and
performing importance sampling during training could be
effective. To improve robustness on challenging poses, in-
corporating more diverse training data and exploring more
robust fitting strategies, such as using predicted dense depth
maps for supervision, are promising directions.

Our framework also inherits certain limitations from the
variational diffusion sampling [43] process it employs, most
notably a tendency towards mode-seeking. For example,
minimizing the DPoser regularization loss alone for “gen-
eration” results in a high Precision of 0.995 but a low Re-
call of 0.163. The low recall, compared to standard genera-
tive diffusion samplers (see Table 1 in the main text), indi-
cates that the optimization framework captures the primary
modes of the data distribution accurately but lacks diversity.
To address this, future research could explore techniques
like particle-based variational inference [40, 63] to enhance
solution diversity. Finally, within the broader context of in-
verse problems we have framed, a plethora of existing meth-
ods [10] could be adapted to leverage our diffusion-based
pose prior. Exploring these methods holds great potential
for future progress.
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L. More Qualitative Results
We show more qualitative results for body pose generation
(Fig. S-7), body pose completion (Fig. S-8), body mesh re-
covery (Fig. S-9), motion denoising (Fig. S-10 and Fig. S-
11), hand generation (Fig S-12), hand inverse kinemat-
ics (Fig S-13), hand mesh recovery (Fig S-14 and Fig S-
15), face inverse kinematics (Fig S-16), face reconstruc-
tion (Fig S-17), whole-body pose generation (Fig S-18 and
Fig. S-19), whole-body mesh recovery (Fig S-20), whole-
body pose completion (Fig S-21 and Fig. S-22).
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Figure S-7. Visualization of body pose generation. DPoser can generate diverse and realistic body poses.

(a)

DPoser (ours)VPoser GTPose-NDF

(b)

DPoser (ours)VPoser GTPose-NDF

Figure S-8. Visualization of body pose completion. (a) Left leg under occlusion. (b) Torso under occlusion.
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VPoserPose-NDFImages GMM DPoser (ours) GT

(a)

GAN-S

(b)

VPoserPose-NDFImages GMM DPoser (ours) CLIFFGAN-S

(c)

Figure S-9. Visualization of body mesh recovery. (a) Fitting from scratch. (b) Initialization using the CLIFF [37] prediction results. (c)
More results of DPoser optimization with CLIFF initialization on in-the-wild images.
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(a) Gaussian noise with 40 mm standard deviation.
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(b) Gaussian noise with 100 mm standard deviation.

Figure S-10. Visualization of motion denoising with noisy observations. We visualize every 20th of the sequence.

17



GT

DPoser
(Ours)

Pose-NDF

Input

Motion sequence

VPoser

(a)

(a) Legs under occlusion.
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(b) Left arm under occlusion.

Figure S-11. Visualization of motion denoising with partial observations. We visualize every 20th of the sequence.
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(a) DPoser (ours) (b) VPoser (c) NRDF

Figure S-12. Visualization of hand pose generation. DPoser produces more diverse and realistic hand poses compared to VPoser [48] and
NRDF [23].

VPoserL2 priorMarkers DPoser (ours) GTNRDF w/o prior

a)

b)

c)

d)

Figure S-13. Visualization of hand inverse kinematics under multiple challenging settings. Comparison across (a) noisy keypoints, (b)
fingertip keypoints, (c) partial finger keypoints, and (d) sparse keypoints settings.
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VPoserL2 priorImages DPoser (ours) GTNRDF w/o prior

Figure S-14. Visualization of hand mesh recovery with mean pose initialization.
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VPoserL2 priorImages DPoser (ours) GTNRDF Hand4Whole

Figure S-15. Visualization of hand mesh recovery with Hand4Whole [44] initialization.
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a)

b)

VPoserL2 priorMarkers DPoser (ours) GTw/o prior

c)

Figure S-16. Qualitative results of face inverse kinematics on the WCPA dataset [30]. Comparison across (a) 1 mm noise, (b) 5 mm noise,
and (c) half-face occlusion. Better zoom in and compare the human eyes and chin.
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(a)

(b)

VPoserL2Images Keypoints EMOCADPoser (ours) GT*

VPoserL2Images Keypoints w/o priorDPoser (ours) GT*

Figure S-17. Visualization of face reconstruction results on the WCPA dataset [30]. Comparisons include (a) fitting from scratch and (b)
initialization using EMOCA [9] results. *Ground truth lacks global orientation and translational data; these are fitted for visualization.
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(a) VPoser-X (b) DPoser-X-base

(c) DPoser-X-fused (d) DPoser-X-mixed

Figure S-18. Visualization of whole-body pose generation. (a) VPoser-X primarily generates standing poses with limited diversity. (b)
DPoser-X-base generates diverse samples but lacks realism in hand interactions and facial expressions. (c) DPoser-X-fused produces less
diverse samples while maintaining plausible whole-body poses. (d) DPoser-X-mixed achieves a well-balanced trade-off between diversity
and realism.
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(a) DPoser-X-mixed

(b) DPoser-X-fused

Figure S-19. Extended visualization of whole-body pose generation. DPoser-X-mixed generates a diverse range of whole-body poses
while maintaining realistic hand interactions and facial expressions. In contrast, DPoser-X-fused retains high realism but produces less
diverse results.
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GMMVPoser-XImages w/o prior GTDPoser-X (ours)

Figure S-20. Visualization of whole-body mesh recovery on the Fit3d dataset [18].

DPoser-X (ours)VPoser-X GT

Figure S-21. Qualitative comparison of whole-body pose completion. One hand is masked randomly.
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DPoser-X-mixedDPoser-X-base GTDPoser-X-fused 

Figure S-22. Visualization of whole-body pose completion for three DPoser-X variants. One hand is masked randomly.
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