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A. Appendix
A.1. Datasets Details
Tab. 7 presents the dataset specifications utilized for pre-
training Dynamic-DINO, including the Objects365 (V1)
[35], GQA [16], Flickr30k [28], and V3Det [41] datasets,
where Texts denotes the number of categories for the de-
tection dataset and the number of phrases for the grounding
dataset, Images denotes the number of images and Annota-
tion denotes the number of instance annotations. The total
number of samples in our pre-training dataset is 1.56M.

Table 7. Pre-Training Data.

Dataset Type Texts Images Annotation

O365 [35] Detection 365 609K 9621K
V3Det [41] Detection 13K 184K 1233K
GQA [16] Grounding 387K 621K 3681K
Flickr30k [28] Grounding 94K 149K 641K

A.2. Core Codes
The core implementation of our MoE-Tuning is detailed in
Algorithm 1, encompassing expert initialization and router
initialization. Following MoE [8] paradigm, we scale up the
model by expanding the FFN in each layer of the decoder
into N FFNs of identical size. For each FFN, its interme-
diate hidden dimension is evenly divided into k partitions,
thereby constructing k × N experts. In addition, we ini-
tialize the experts by assigning the pre-trained FFN weights
from the base model to each expert. For router initialization,
we first randomly initialize the weights W ′

r ∈ RN×D, and
then replicate each centroid vector in W ′

r k times to form
the router weights Wr ∈ RkN×D. With this initialization,
the router is guaranteed to select the k experts derived from
the same FFN at the start of fine-tuning, ensuring incremen-
tal performance improvements during MoE-Tuning.

A.3. More Experiments
Ablation Study on Parameter Numbers. Our method can
flexibly adjust total parameters while keeping activated pa-
rameters unchanged. As shown in Table 8, even +6M pa-
rameters bring +0.73 AP on average, with scaling parame-
ters yielding greater improvements.
Ablation Study on MoE Deployment. As shown in Ta-
ble 9, extending MoE layers to FFN in image encoder, the
performance further increases by +0.5 AP on average.

Algorithm 1 MoE Initialization

"""
Input:
n: int
k: int
ffn: nn.Module
"""
embed_dim = ffn.embed_dim
ffd_dim = ffn.ffd_dim // k

ffns = [
FFN(embed_dim, ffd_dim)
for _ in range(k)

]
for i in range(k):

ffns[i].w1
=ffn.w1[i*ffd_dim:(i+1)*ffd_dim,:]

ffns[i].b1
=ffn.b1[i*ffd_dim:(i+1)*ffd_dim]

ffns[i].w2
=ffn.w2[:,i*ffd_dim:(i+1)*ffd_dim]

ffns[i].b2 = ffn.b2 / k

self.experts = nn.ModuleList([])
for i in range(n):

for j in range(k):
self.experts.append(

copy.deepcopy(ffns[j])
)

w_gate = torch.randn(n, 1, embed_dim)
w_gate = w_gate.repeat(1, k, 1)
w_gate = w_gate.reshape(n*k, embed_dim)
self.router = nn.Parameter(

w_gate, requires_grad=True)

Ablation Study on Model Initialization. We validate the
effectiveness of our initialization modification. As shown
in Table 10, it boosts the accuracy ceiling.
Results on RefCOCO. Experiments on RefCOCO, Ref-
COCO+ and RefCOCOg are added in Table 11. Results
show that our method still works on zero-shot REC tasks.
Performance Comparisons on Edge Devices. We evalu-
ate the pre-trained model on Jetson Orin NX SUPER 8GB.
As shown in Table 12, our method introduces only +0.24M



Table 8. Comparison of the parameter numbers. All models are
trained on O365, GoldG, and V3Det. Image resolution is 640 ×
640. “Parameters” represents active parameters / total parameters.
Dynamic-DINO×N-Top2 indicates a model with N experts, where
2 experts are activated per inference.

Method Parameters COCO-val LVIS-minival LVIS-val

G-DINO 1.5 Edge 178M/178M 42.6 31.1 25.4
Dynamic-DINO×4-Top2 178M/184M 43.2(+0.6) 31.6(+0.5) 26.5(+1.1)
Dynamic-DINO×8-Top2 178M/197M 43.4(+0.8) 32.4(+1.3) 26.9(+1.5)
Dynamic-DINO×16-Top2 178M/222M 43.7(+1.1) 33.6(+2.5) 27.4(+2.0)

Table 9. Ablation study of MoE deployment across model parts.
Dynamic-DINO×16-Top2 is utilized. All models are trained on
O365, GoldG, and V3Det. Image resolution is 800 × 1333.

Decoder Image Encoder COCO-val LVIS-minival LVIS-val

✗ ✗ 42.6 31.1 25.4
✓ ✗ 43.7(+1.1) 33.6(+2.5) 27.4(+2.0)
✓ ✓ 44.5(+1.9) 33.7(+2.6) 28.0(+2.6)

Table 10. Ablation study for the initialization. Dynamic-
DINO×16-Top2 is utilized. All models are trained on O365,
GoldG, and V3Det. Image resolution is 640 × 640.

Method COCO-val LVIS-minival LVIS-val

G-DINO 1.5 Edge 42.6 31.1 25.4
Dynamic-DINO w/o Initialization 43.1 32.5 26.2
Dynamic-DINO w/ Initialization 43.7 33.6 27.4

Table 11. Comparison of zero-shot performance on RefCOCO,
RefCOCO+ and RefCOCOg. All models are trained on O365,
GoldG, and V3Det. Image resolution is 640 × 640.

Method
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

G-DINO 1.5 Edge 43.8 49.9 39.5 43.3 47.9 40.2 51.2 52.8
Dynamic-DINO (Ours) 47.9 53.9 42.2 47.4 52.0 42.3 56.6 56.5

FLOPs and -0.8 FPS over the baseline while achieving
+1.87 AP on average.

Table 12. Performance comparisons on NVIDIA Orin NX. All
models are trained on O365, GoldG, and V3Det. Image resolution
is 640 × 640. Dynamic-DINO×16-Top2 is utilized. FLOPs are
measured solely for the Decoder, which contains the MoE Layers
in our method. FPS evaluates the full feed-forward pass.

Method COCO-val LVIS-minival LVIS-val FLOPs FPS

G-DINO 1.5 Edge 42.6 31.1 25.4 2679.51M 10.2
Dynamic-DINO (Ours) 43.7 33.6 27.4 2679.75M 9.4

A.4. Visualizations
Fig. 12 provides a comparative visualization of the model’s
zero-shot object detection performance before and after the
implementation of MoE-Tuning. The results demonstrate a

significant improvement in the model’s sensitivity to both
object quantity and small-scale targets. Fig. 13 further vi-
sualizes the improvement in the model’s ability to detect
rare classes, indicating that MoE-Tuning effectively allevi-
ates the long-tail problem.

A.5. More Statistical Analysis
Fig. 14 provides a detailed visualization of the ex-
pert collaboration statistics across each MoE layer of
Dynamic-DINO, evaluated on the COCO, LVIS-minival,
and ODinW13. The results reveal that Dynamic-DINO ex-
hibits a nearly consistent pattern of expert collaboration
across diverse datasets, which underscores the stability of
expert collaboration and the sufficiency of training.
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Figure 12. Comparison of visualization results for zero-shot inference on LVIS. We visualize the predictions of our pre-trained base
model and Dynamic-DINO after MoE-Tuning. The failures are highlighted with a yellow circle.
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Figure 13. Comparison of visualization results for zero-shot inference on rare classes of LVIS. We visualize the predictions of our
pre-trained base model and Dynamic-DINO after MoE-Tuning. The failures are highlighted with a yellow circle.
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Figure 14. Expert collaboration across 3 datasets. The normalized co-selection frequencies are quantified for all expert pairs with
Dynamic-DINO×16-Top2 model, which comprises 16 experts and activates 2 experts per inference.
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