
End-to-End Multi-Modal Diffusion Mamba

Supplementary Material

7. Appendix A
7.1. Theorem 1
Theorem 1. According to Bayes’ theorem and the Gaus-
sian distribution density formula, the following calculation
relationship of pdata(y)

pdata(z
g
n,t)

is obtained:

pdata(y)

pdata(z
g
n,t)

= exp

(
∥zgn,t∥2

2
−
∥zgn,t −

√
ᾱgt z

g
n,0∥2

2(1− ᾱgt)

)
(1)

Proof. According to [50], from Bayes’ theorem, we express
the posterior probability as:

pdata(z
g
n,0|z

g
n,t) =

p(zgn,t|z
g
n,0)pdata(z

g
n,0)

p(zgn,t)
. (2)

Rearranging, we obtain:

pdata(z
g
n,0)

pdata(z
g
n,t)

=
p(zgn,t|z

g
n,0)

p(zgn,t)
. (3)

Given the real data zgn,0, the probability of the diffused noise
state is p(zgn,t|z

g
n,0). p(zgn,t) is the marginal distribution of

all possible zgn,0 after diffusion.
The forward noise addition process in the diffusion

model is defined as follows:

zgn,t =
√

ᾱgt z
g
n,0 +

√
1− ᾱgt ϵ

g
n,t, ϵ

g
n,t ∼ N (0, I), (4)

and it can be seen that given zgn,0, zgn,t obeys the Gaussian
distribution:

p(zgn,t|z
g
n,0) = N (zgn,t;

√
ᾱgt z

g
n,0, (1− ᾱgt)I), (5)

where this conditional probability indicates that zgn,t is a
Gaussian distribution with

√
ᾱgt z

g
n,0 as mean and (1− ᾱgt)I

as variance.
Then, for the marginal distribution p(zgn,t) can be calcu-

lated by integration:

p(zgn,t) =

∫
p(zgn,t|z

g
n,0)pdata(z

g
n,0)dz

g
n,0. (6)

Typically, we assume that the underlying distribution of the
data follows a standard Gaussian:

pdata(z
g
n,0) = N (zgn,0; 0, I), (7)

since the convolution of two Gaussian distributions is a
Gaussian distribution, p(zgn,t) is still a Gaussian distribu-
tion:

p(zgn,t) = N (zgn,t; 0, I). (8)

Combining the above derivation, we get:

pdata(z
g
n,0)

pdata(z
g
n,t)

=
p(zgn,t|z

g
n,0)

p(zgn,t)
. (9)

Then, substitute into the Gaussian distribution density for-
mula:

p(zgn,t|z
g
n,0)

p(zgn,t)
=

exp (−∥zgn,t−
√
ᾱg

t z
g
n,0∥

2

2(1−ᾱg
t)

)

exp (−∥zgn,t∥2

2)
. (10)

Further sorting, thus, we derive Eq. (1), completing the
proof.

7.2. Theorem 2
Theorem 2. Given the denoising process modeled by a
score-based probability ratio function sθ(z

g
n,t), defined as

sθ =
pdata(z

g
n,0)

pdata(z
g
n,t)

, this paper defines a learnable approxima-
tion using a parameterized score function fθ, such that the
probability ratio can be estimated as:

sθ(z
g
n,t) =

exp (fθ(z
g
n,t, z

g
n,0))∑

y∈zgn,0:t−1
exp (fθ(z

g
n,t, y))

, (11)

Proof. To derive Eq. (11), we start from the definition of
the score-based probability ratio:

sθ(z
g
n,t) =

pθ(z
g
n,0)

pθ(z
g
n,t)

. (12)

Using Bayes’ theorem, we can express the conditional
probability as:

pθ(z
g
n,0|z

g
n,t) =

p(zgn,t|z
g
n,0)pθ(z

g
n,0)

p(zgn,t)
. (13)

Taking the logarithm on both sides, we define a learnable
function fθ(z

g
n,t, z

g
n,0) that approximates:

fθ(z
g
n,t, z

g
n,0) ≈ log pθ(z

g
n,0|z

g
n,t). (14)

Given the forward diffusion process follows:

p(zgn,t|z
g
n,0) = N (zgn,t;

√
ᾱgt z

g
n,0, (1− ᾱgt)I), (15)

and the marginal distribution:

q(zgn,t) ≈ N (zgn,t; 0, I), (16)

we obtain:

fθ(z
g
n,t, z

g
n,0) = −

∥zgn,t −
√

ᾱgt z
g
n,0∥2

2(1− ᾱgt)
+
∥zgn,t∥2

2
. (17)

To ensure numerical stability and gradient optimization,
we normalize sθ(z

g
n,t) using softmax over the set of possible

denoising states:

sθ(z
g
n,t) =

exp (fθ(z
g
n,t, z

g
n,0))∑

y∈zgn,0:t−1
exp (fθ(z

g
n,t, y))

. (18)

Thus, we have derived Eq. (11), which provides a param-
eterized score function for probability ratio estimation.

7.3. Theorem 3
Theorem 3. To achieve the optimal score entropy [50]
which is demonstrated on Eq. (21), the selection step choose
j items where each zgn,t satisfies se = 0, i.e.,

sθ(z
g
n,t) ≈

pdata(y)

pdata(z
g
n,t)

(19)

Proof. To prove the Theorem 3, we divide this proof into
three parts: The first is to determine the optimization tar-
get of the model approximation. The second is to deter-
mine the iterative process of the model optimization tar-
get. The third is to prove the convergence validity of the
iterative process.

1) The optimization target of the model approxima-
tion

According to the denoising score entropy proposed by
Lou et al. [50], the Mamba block loss function can be de-
fined as follows:

Lse = Ezgn,0∼p0,z
g
n∼p(·|zgn,0)

se (20)

To minimize the loss function, the se should be closed
to value 0. And based on the score entropy loss [50], the se
can be described as:

se =
∑

y∈zgn,0:t−1

ωg
zgn,t

(
sθ(z

g
n,t)−

pdata(y)

pdata(z
g
n,t)

log sθ(z
g
n,t)

+K

(
pdata(y)

pdata(z
g
n,t)

))
,

(21)

where K(a) = a(log a − 1) a normalization term that en-
sures the loss is non-negative. And weights ωg

zgn,t
∈ (0, 1)

can adjust the weights assigned to different noise latent
representations. This can improve optimization efficiency
by explicitly selecting important point pairs. For exam-
ple, higher weights can be assigned to noise latent repre-
sentations that may introduce larger errors within a specific

range, thereby guiding the update of the model. And ul-
timately control the final total se to be close to 0. And
sθ(z

g
n,t) is n-th noise latent representation of the model pre-

dicted score ratio at t-th denoising step.
To determine the necessary conditions for minimiz-

ing se, we compute the partial derivative with respect to
sθ(z

g
n,t):

∂se

∂sθ(z
g
n,t)

=
∑

y∈zgn,0:t−1

ωg
zgn,t

(
1− pdata(y)

pdata(z
g
n,t)

1

sθ(z
g
n,t)

)
.

(22)
Setting the gradient to zero for optimization,

1− pdata(y)

pdata(z
g
n,t)

1

sθ(z
g
n,t)

= 0. (23)

Rearranging the terms, we obtain:

sθ(z
g
n,t) =

pdata(y)

pdata(z
g
n,t)

. (24)

Thus, at the optimal solution, the predicted score func-
tion must exactly match the empirical probability ratio.

For model parameters θ, we analyze the gradient:

∂se

∂θ
=

∑
y∈zgn,0:t−1

ωg
zgn,t

(
∂sθ(z

g
n,t)

∂θ
−

pdata(y)

pdata(z
g
n,t)

1

sθ(z
g
n,t)

∂sθ(z
g
n,t)

∂θ

)
.

(25)

For gradient convergence, we set the derivative to zero:

∂sθ(z
g
n,t)

∂θ

(
1− pdata(y)

pdata(z
g
n,t)

1

sθ(z
g
n,t)

)
= 0. (26)

Since the gradient term
∂sθ(z

g
n,t)

∂θ is nonzero for model
updates, the following condition must hold:

1− pdata(y)

pdata(z
g
n,t)

1

sθ(z
g
n,t)

= 0, (27)

which again yields the optimal condition:

sθ(z
g
n,t) =

pdata(y)

pdata(z
g
n,t)

. (28)

In summary, the necessary conditions for minimizing the
Score Entropy Loss and ensuring the optimal score function
are:
• The predicted score function must satisfy:

sθ(z
g
n,t) =

pdata(y)

pdata(z
g
n,t)

. (29)

• The gradient with respect to the model parameters must
satisfy:

∂sθ(z
g
n,t)

∂θ

(
1− pdata(y)

pdata(z
g
n,t)

1

sθ(z
g
n,t)

)
= 0. (30)

These conditions imply that when the model learns the
correct probability ratio, the gradient becomes zero, leading
to optimal convergence of the Score Entropy Loss. There-
fore, optimizing sθ(z

g
n,t) to match pdata(y)

pdata(z
g
n,t)

is both a neces-
sary and sufficient condition for achieving the lowest possi-
ble loss.

Based on Eq. (26), θ = {Hg
n,t, A,B,C,D,∆} represent

the state space in the block. We can obtain the selected noise
latent representation zgn,t by updating the computation in the
state space architecture from Mamba-2 [26], which can be
defined as follows:

Hg
n,t = ĀHg

n,t−1 + B̄zgn,t (31)

zgn−1,t = CHg
n,t +Dzgn,t (32)

Ā = exp (∆A) (33)

B̄ = (∆A)−1 · (exp (∆A)− I) ·∆B (34)

where Hg
n,t represents the hidden state representation, A

and B control the evolution of hidden states and latent space
noise vector inputs, respectively, C governs the hidden state
representation of the target output and D manages the non-
linear skip connection for latent space noise vector inputs.
∆ denotes the learnable time parameter.

2) The iterative process of the model optimization tar-
get Considering the parameters in θ, they are updated by the
following steps. First, the update of A and Ā. Given that Ā
controls the recursive evolution of hidden state Hg

n,t based
on A and ∆, we can gain the relationship in Eq. (33). So,
the gradient can be described as follows:

∂L
∂A

=
∂L
∂Ā
· ∂Ā
∂A

(35)

where
∂Ā

∂A
= ∆ · exp (∆A) (36)

then through backpropagation to calculate the gradient of L
to Ā and combined with the chain rule to update A.

Second, the update of B and B̄. Given that the def-
inition of B̄ in Eq. (34), the gradient can be described as
follows (familiar with the update rule of A):

∂L
∂B

=
∂L
∂B̄
· ∂B̄
∂B

(37)

where gradient transfer involves matrix derivation, which
requires considering the derivative rule of matrix multipli-
cation. Finally, the chain rule depends on the gradients of
∆A and ∆B.

Third, the update of C. Given that C controls the hid-
den state and its direct contribution to the output zgn−1,t is
as Eq. (32) defined, the gradient can be described as fol-
lows:

∂L
∂C

=
∂L

∂zgn−1,t

·
∂zgn−1,t

∂C
(38)

where
∂zgn−1,t

∂C
= Hg

n,t (39)

So the update rule can be described as follows:

C ← C − η
∂L
∂C

(40)

where η is the learning rate.
Fourth, the update of D. Given that D governs the skip

connection and directly act on zgn,t, the gradient can be de-
fined as follows:

∂L
∂D

=
∂L

∂zgn−1,t

·
∂zgn−1,t

∂D
(41)

where
∂zgn−1,t

∂D
= zgn,t (42)

Fifth, the update of ∆. ∆ denotes the learnable time
parameter and affects the dynamic behavior of Ā and B̄. So
the gradient can be defined as follows:

∂L
∂∆

=
∂L
∂Ā
· ∂Ā
∂∆

+
∂L
∂B̄
· ∂B̄
∂∆

(43)

where
∂Ā

∂∆
= A · exp (∆A) (44)

f(A,B,∆) =− (∆A)−1A(∆A)−1(exp(∆A)− I)∆B

+ (∆A)−1(A exp(∆A))∆B

+ (∆A)−1(exp(∆A)− I)B (45)

In this problem, the structure of the state space model
and the diffusion model provide theoretical support for the
strong convexity of the loss function and the Lipschitz prop-
erty of the gradient. First, the stability of the state space
model leads to the hidden state update equation:

Hg
n,t = ĀHg

n,t−1 + B̄zgn,t (46)

where Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A) − I)∆B
is generated via matrix exponential. It has the following
characteristics:

• If A is a stable matrix (all eigenvalues have negative real
parts), then the modulus of the eigenvalues of Ā is less
than 1, which ensures that the hidden state does not di-
verge.

• The state update equation is linear, so the gradient of the
parameters A,B,C,D is linearly solvable, making it easy
to optimize.
Secondly, given the characteristics of the diffusion

model, there is a score ratio prediction loss function:

L = Ezgn,t,p

[
∥ pdata(y)

pdata(z
g
n,t)
− sθ(z

g
n,t)∥22

]
(47)

where L is in squared error form and is therefore a con-
vex function (subconvexity). Then the gradient can be ex-
pressed as follows:

∇θL = 2Ezgn,t,p

[
∥(pdata(y)

pdata(z
g
n,t)
− sθ(z

g
n,t))∇θsθ(z

g
n,t)∥22

]
(48)

where the gradient is a linear combination of θ and satisfies
the Lipschitz continuity condition.

To sum up, combined with the model parameters θ =
A,B,C,D,∆, there is the following convergence of the
specific parameter updating process.

First for the hidden state update:

Hg
n,t = ĀHg

n,t−1 + B̄zgn,t (49)

where A is a stable matrix, Ā is stable, ensuring that the
hidden state does not diverge.

Second for output calculation:

zgn−1,t = CHg
n,t +Dzgn,t (50)

and it is a linear transformation, which ensures the stability
of the gradient solution for C and D.

Third for time step parameters ∆, it is a learnable pa-
rameter of the time scale, which is directly related to the
discretization in the state space model. It is updated by the
chain rule as follows:

∂L
∂∆

=
∂L
∂Ā
· ∂Ā
∂∆

+
∂L
∂B̄
· ∂B̄
∂∆

(51)

among this, in the discretization formula, Ā and B̄ are ex-
ponential functions with continuous and differentiable gra-
dients, which are easy to converge.

3) The convergence validity of the iterative process
In order to ensure the convergence of the above iterative

process, the following conditions usually need to be met:
• The convergent objective functionL is a continuously dif-

ferentiable function with respect to parameter θ and it is
strongly convex or subconvex (at least a convex function).

• Make sure the learning rate satisfies 0 < η < 2/L where
L is the Lipschitz constant for the gradient ∇θL of the
convergent objective function (the upper bound on the
rate of change of the gradient).

• The matrix Ā (generated by discretization) is stable, that
is, the magnitude of its eigenvalues is less than 1.
When the above convergence conditions are met, assum-

ing that the convergence target L function is a µ-strongly
convex function (strong convexity is a stricter form of con-
vex function), the convergence of gradient descent can be
proved by the following formula. First, the updated formula
for gradient descent is given:

θk+1 = θk − η∇θL(θk) (52)

where θk is the parameter vector at the k-th iteration.
Secondly, the properties of strongly convex functions are

given, that is, if the convergent objective function L is µ-
strongly convex and the Lipschitz constant of the gradient
is L, then the error of the gradient descent method will con-
verge at an exponential rate:

L(θk)− L(θ∗) ≤ ρk
(
L(θ0)− L(θ∗)

)
(53)

where ρ = 1 − 2ηµ is the convergence rate (0 < ρ < 1),
and θ∗ is the global optimum.

Third, if the Lipschitz gradient condition is satisfied, that
is,∇θL is L-Lipschitz continuous:

∥∇θL(θ1)−∇θL(θ2)∥ ≤ L∥θ1 − θ2∥ (54)

then selecting a learning rate 0 < η < 2
L ensures conver-

gence.

Algorithm 1 Gradient Descent Algorithm

Input: Initialize parameters A, B, C, D, and ∆.
repeat

Calculate the loss L.
Compute the gradient of L with respect to A, B, C,

D, and ∆ using the chain rule.
Update each parameter using the gradient descent

rule.
Perform backpropagation to compute:

∇θ∥ pdata(y)
pdata(z

g
n,t)
− sθ(z

g
n,t)∥22.

until convergence

In general, the process of update and convergence can
be summarized in Algorithm 1. Through repeated itera-
tions, the model parameter θ will be gradually optimized,
so that the convergence objective function L will be con-
verged and se gradually approaches 0, that is, sθ approaches
pdata(y)
pdata(z

g
n,t)

. Then j items of noise latent representation zgn,t
that satisfy all the above conditions will be selected, and

the model will proceed to the next step of denoising in the
direction of these j items.

Above all, in the inference stage, the model will choose
the best noise latent representation of image patch or text
embedding, including j items to restore the image or text.
Due to this, the model has already learned from the datasets
that should be focused on and ignored. Compared with
the Transformer models, which need to calculate all im-
age patches or text embeddings, it will shorten the infer-
ence time when generating high-resolution images or long-
sequence text. The results are shown in the main paper Sec-
tion 5.3.1 Performance Analysis.

8. Appendix B
8.1. Denoising process based on DPM-Solver
Based on the diffusion denoising model trained by Score
Entropy Loss, we hope to combine DPM-Solver (Diffusion
Probabilistic Model Solver)[51] in the inference stage to re-
duce sampling steps and improve inference efficiency.

DPM-Solver is a high-order ODE-solving method for
diffusion models. It constructs partial differential equations
(ODEs) and uses numerical solution techniques to accel-
erate the diffusion denoising process. It can restore high-
quality data from Gaussian noise in a minimal number of
steps (such as 10 steps) without sacrificing model perfor-
mance.

The core idea of DPM-Solver is to reformulate the in-
verse diffusion process of the diffusion model as an ordi-
nary differential equation (ODE) and solve it efficiently us-
ing numerical methods. For the standard diffusion model,
we have:

dzgn,t
dt

= −1

2
βtz

g
n,t +

√
βtϵ

g
n,t, ϵgn,t ∼ N (0, I). (55)

DPM-Solver estimates ϵθ(z
g
n,t, t) by denoising the score

matching, which can be rewritten as:

dzgn,t
dt

= fθ(z
g
n,t, t), (56)

where the formula describes the rate of change of the la-
tent variable zgn,t in the time t dimension, and its evolution
process can be accelerated by numerical solution methods.

In the Mamba decoder trained with Score Entropy Loss,
we learn:

sθ(z
g
n,t) =

exp (fθ(z
g
n,t, z

g
n,0))∑

y∈zgn,0:t−1
exp (fθ(z

g
n,t, y))

. (57)

Therefore, in the DPM-Solver framework, we hope to
use this ratio’s gradient information to directly construct the
ODE and reduce the number of sampling steps during infer-
ence.

First, we need to compute denoised ODE. DPM-Solver
uses Score Matching technology [51] to predict the noise
ϵθ(z

g
n,t, t) through a neural network, and then calculates it

according to the denoising ODE:

dzgn,t
dt

= −1

2
βt

(
zgn,t −

√
ᾱgt z

g
n,0

1− ᾱgt

)
, (58)

furthermore, we can calculate based on Score Entropy [50]:

dzgn,t
dt

= −1

2
βtsθ(z

g
n,t)∇z log pθ(z

g
n,0|z

g
n,t), (59)

where ∇z log pθ(zgn,0|z
g
n,t) is calculated by se, sθ(z

g
n,t is

predicted probability ratios through neural networks. This
formula describes the ODE trajectory from the noisy state
zgn,t to the denoised state zgn,0.

We then use DPM-Solver to perform inference. For the
first-order approximation method, the basic form of DPM-
Solver is the first-order ODE approximation:

zgn,t ≈ zgn,t−∆t −
1

2
βt

(
zgn,t −

√
ᾱgt z

g
n,0

1− ᾱgt

)
∆t, (60)

by using sθ(z
g
n,t) calculated by Score Entropy Loss, we can

further rewrite the formula:

zgn,t ≈ zgn,t−∆t −
1

2
βtsθ(z

g
n,t)∇z log pθ(z

g
n,0|z

g
n,t)∆t.

(61)
The formula can be directly used to update the denoising
process to achieve efficient sampling iteratively.

Furthermore, DPM-Solver uses second-order numerical
methods [51] to improve accuracy:

zgn,t = zgn,t−∆t +
∆t

2

[
fθ(z

g
n,t, t) + fθ(z

g
n,t−∆t, t−∆t)

]
(62)

which allows us to complete denoising inference in a very
small number of iterations (e.g., 10-20 steps), significantly
speeding up the computation compared to normal diffusion
sampling (e.g., 1000 steps).

Algorithm 2 Mamba-Based Inference with DPM-Solver

Input: Noisy latent state zgn,t.
repeat

Predict the score function sθ(z
g
n,t) for computing

the denoising ODE.
Apply DPM-Solver update rule: zgn,t ← zgn,t−∆t +

∆t
2

[
fθ(z

g
n,t, t) + fθ(z

g
n,t−∆t, t−∆t)

]
.

until gain the zgn,t

9. Appendix C
9.1. Model Configuration

Configuration Value

Size 7B
Mamba block 49
Hidden Dimension 2048
GFlops 424
Optimizer AdamW
Learning Rate 0.0001
Weight Decay -
Training Epochs 1
Sampling step 500000
EMA 0.9999
Patch size 2×2
Maximum Token Length 512

Table 1. Parameter settings for MDM.

10. Appendix D
10.1. SentencePiece (Unigram BPE)
SentencePiece (Unigram BPE) [45] provides an optimal
subword-based tokenization approach that enables im-
proved generalization and adaptability for handling both
textual and multimodal data.

10.1.1. Theoretical Background
SentencePiece employs a probabilistic model based on a
Unigram Language Model (ULM), where each sentence x
is decomposed into a sequence of subwords si with a like-
lihood function:

p(x) =
∏
i

p(si), (63)

where each subword unit si is assigned a probability es-
timated from training data. Unlike traditional Byte-Pair
Encoding (BPE), which deterministically merges frequent
subword pairs, the Unigram BPE method probabilistically
learns an optimal vocabulary while gradually discarding
subwords with lower contributions.

To train SentencePiece, an initial vocabulary is con-
structed using all possible subword combinations, after
which an iterative Expectation-Maximization (EM) opti-
mization is performed. At each iteration, subwords con-
tributing the least to sequence likelihoods are removed,
leading to an optimal vocabulary.

10.1.2. Training Procedure
The training of the SentencePiece model is conducted on
a large-scale dataset containing both pure-text corpora and
multimodal text-image descriptions. Given the multimodal
nature of our dataset, we mix textual data from Ultrachat
and text descriptions from JourneyDB and ImageNet to en-
sure cross-modal adaptability.

Dataset Preprocessing: To prepare the dataset, raw text
is extracted, normalized, and formatted as a line-separated
corpus file. The dataset mixing strategy follows:

• Extract textual information from Ultrachat.
• Concatenate textual descriptions from JourneyDB and

ImageNet.
• Remove redundant, low-quality, or excessively short text

samples.
• Shuffle the corpus to prevent dataset bias.

SentencePiece Model Training: The SentencePiece Un-
igram BPE model is trained using the following configura-
tion:

import sentencepiece as spm
spm.SentencePieceTrainer.train(

input="text_data.txt",
Training corpus
model_prefix="unigram_bpe",
Output model prefix
vocab_size=32000,
Vocabulary size
model_type="unigram",
Unigram-based BPE
character_coverage=0.9995,
Coverage for rare characters
num_threads=8,
Parallel training
input_sentence_size=1000000,
Sample size
shuffle_input_sentence=True
Shuffle corpus

)

This results in two key output files:
unigram bpe.model (binary model for tokeniza-
tion) and unigram bpe.vocab (vocabulary list with
probabilities).

10.1.3. Evaluation and Optimization Strategies
The effectiveness of the trained tokenization model is eval-
uated based on tokenization efficiency and generalization
capability. The following criteria are considered:
• Subword Granularity: The trade-off between word and

character-level tokenization.
• Out-of-Vocabulary (OOV) Rate: The ability to handle

unseen words.
• Multimodal Alignment: The compatibility of subword

embeddings with image features in the latent space.
Given the computational constraints of multimodal dif-

fusion models, we optimize the SentencePiece model with:
• Selecting an optimal vocab size (16K-32K) to bal-

ance representation and sequence length.
• Applying dataset mixture strategies to enhance general-

ization across different data distributions.
• Ensuring tokenization stability by enforcing
character coverage 0.9995 to capture rare
textual variations.

11. Appendix E

11.1. Complexity

Since the size of the noisy latent encoder (VAE) is signifi-
cantly smaller than that of the diffusion decoder (Mamba),
we will focus our analysis on the computational complexity
of the diffusion decoder. According to [61], the complexity
of each Mamba block is O(LN2), where L is the length of
the input data and N refers to the size of each parameter
({Hg

n,t, A,B,C,D,∆}) in the state space. The diffusion
decoder is composed of M Mamba blocks, resulting in an
overall computational complexity of O(MLN2).

For comparison, consider an equivalent end-to-end trans-
former model optimized with GQA [1, 71, 89]. This model
maintains the same input length L and GQA module di-
mension N . With M layers and a grouping parameter G,
its computational complexity is O(ML2N/G).

Determining which complexity is superior between
O(MLN2) and O(ML2N/G) can be challenging. How-
ever, it is important to note that N can be significantly
smaller than L/G when L is very large. As a result, the pro-
posed MDM can achieve greater computational efficiency
than end-to-end transformer models when processing high-
resolution images and long-sequence texts.

12. Appendix F

12.1. Image generation

Figure 1. Image generation with CFG on ImageNet [13] 256 ×
256.

12.2. Image generation on COCO and Flickr

A black dog running on the grass. Two children playing on the beach. A red car parked by the street. A chef preparing food in a kitchen.

A cat sitting on the windowsill
looking outside.

A group of people having a picnic in
the park.

An elderly man reading a newspaper
on a bench.

A photographer taking
pictures of the sunset.

A hiker enjoying the view from
the mountain top.

A scientist conducting research
in a laboratory.

A fox walking in the snow. A kangaroo hopping on the
grassland.

A butterfly resting on a flower. A monkey picking bananas
in a tree.

A firefighter working at a fire
scene.

A whale swimming in the
ocean.

Figure 2. Image generation on COCO [40] caption text.

A fashion model walking on a
runway surrounded by

photographers.

A person rock climbing on a steep cliff
without any safety ropes.

A group of friends enjoying a
bonfire at a campsite under the

stars.

A kayaker navigating through a
narrow canyon with towering rock

walls.

A street performer balancing on a
unicycle while juggling in a crowded

plaza.

A couple posing for wedding
photos in a picturesque garden at

sunset.

A person sitting on a rooftop terrace
overlooking a bustling cityscape.

A group of students in graduation
gowns tossing their caps into the air.

A surfer catching a large wave at
a remote beach with rocky cliffs.

A traveller pulling a suitcase through a
crowded airport terminal.

A flock of flamingos wading in a
shallow lagoon at sunrise.

An abandoned fishing boat resting on
a sandy shore with peeling paint.

A family of otters swimming together
in a crystal-clear river surrounded by

mossy rocks.

A herd of wild horses galloping
through a snow-covered

meadow at dusk.

A peacock displaying its vibrant
feathers in the middle of a
serene botanical garden.

A waterfall cascading into a turquoise
pool, surrounded by dense tropical

rainforest.

Figure 3. Image generation on Flickr 30K [84] caption text.

13. Appendix G

A young girl in a pink t-shirt is
laughing as she swings on a

playground swing, surrounded
by green trees and a bright

blue sky.

Two elderly men, one wearing a
blue cap and the other a grey
sweater, are playing chess in a

sunny park with people walking
in the background.

A professional chef in a white
uniform and hat is

meticulously decorating a
chocolate cake in a well-

equipped kitchen.

A group of teenagers, three
boys and two girls, are taking a

selfie on a rocky beach at
sunset, all smiling and making

peace signs.

A small dog with fluffy white
fur is jumping to catch a yellow
frisbee on a grassy field, with
no other people visible in the

scene.

A street performer dressed in a
colorful costume and mask

dances in front of a crowd in an
urban square, with old buildings

in the background.

Figure 4. Drawbacks in image generation.

13.1. Drawbacks
While MDM demonstrates strong performance across
various tasks and enhanced processing speed for high-
resolution images and long text sequences (as shown in
the main paper Section 5.3.1 Performance Analysis), it
faces several limitations. The model shows reduced effi-
ciency when handling low-resolution images or short text
sequences, and its overall performance still trails behind tra-
ditional multi-modal pre-trained models. Furthermore, the
model exhibits hallucination issues. These limitations rep-
resent key areas for future improvement.

It can be observed from Fig. 4 that MDM still generates
a small number of defective images, such as image deforma-
tion, collapse, distortion, and blurring. This may be due to
the model’s scale being insufficient and limitations in how
each modality’s data is represented in the decoder. Addi-
tionally, the diffusion reduction process might experience
some instability, which could lead to subpar sampling re-
sults. Therefore, there is still potential for further improve-
ments to the model to address these issues.

The partial performance results of the model on the
Flickr 30K dataset reveal significant challenges, particularly
when dealing with complex text data that requires generat-
ing intricate images, especially those involving people and
animals. The model often loses important details, such as
facial features and the depiction of limbs. Additionally, it
exhibits a tendency to be inefficient and make errors, such
as repetitively copying and pasting certain objects, resulting
in a dilution of detail for those entities and the generation of
instances that do not accurately match the accompanying
descriptive language (as shown in Figs. 3 and 5). The main
reason for the above problems is that the Flickr 30K dataset
emphasizes the correlation between different modal seman-
tics rather than focusing solely on classification or recog-
nition tasks like the COCO dataset. This means that the

model needs stronger capabilities for multi-modal semantic
understanding. The MDM model employs a unified modal
fusion decoder under a constrained scale, which may limit
its ability to enhance semantic understanding compared to
traditional models. Therefore, the MDM model needs con-
tinuous optimization.

A young girl in a pink t-shirt is
laughing as she swings on a

playground swing, surrounded
by green trees and a bright

blue sky.

Two elderly men, one wearing a
blue cap and the other a grey
sweater, are playing chess in a

sunny park with people walking
in the background.

A professional chef in a white
uniform and hat is

meticulously decorating a
chocolate cake in a well-

equipped kitchen.

A group of teenagers, three
boys and two girls, are taking a

selfie on a rocky beach at
sunset, all smiling and making

peace signs.

A small dog with fluffy white
fur is jumping to catch a yellow
frisbee on a grassy field, with
no other people visible in the

scene.

A street performer dressed in a
colorful costume and mask

dances in front of a crowd in an
urban square, with old buildings

in the background.

Figure 5. Drawbacks in generating complex captions images.

