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7. Ethical Discussion
Privacy. We use temporary accounts and virtual user-

names to register various apps and ensure no personal in-
formation is entered. The dataset contains no authentic per-
sonal information.

Ethical Consent in Data Collection. A formal con-
sent process is implemented, wherein participants explicitly
agree to the inclusion of their human-annotated data in the
dataset. All data are collected with informed consent and in
full compliance with ethical guidelines.

Security Concerns. The development of intelligent
agents trained on datasets like this offers significant poten-
tial for automating tasks and enhancing accessibility. How-
ever, it also raises important ethical and security concerns.
Sensitive operations, such as financial transactions or pri-
vacy management, pose vulnerabilities without robust safe-
guards. Additionally, malicious actors could exploit these
agents to bypass security protocols or manipulate appli-
cations for unethical purposes. To mitigate these risks,
it is crucial to implement secure model designs, privacy-
preserving techniques, and establish clear ethical guide-
lines. Addressing these challenges will help ensure the re-
sponsible deployment of such technology while maximiz-
ing its societal benefits.

8. Details of GUIOdyssey
8.1. Description of Task Categories
The specific details of the six task categories are as follows:

General Tool. This category encompasses tasks that in-
volve navigating through system-wide operations such as
managing system settings or notifications for apps. An in-
struction example of a general tool task is “Adjust the noti-
fication settings for the YouTube app on your phone using
Settings, then proceed to open YouTube”.

Information Management. Information management
tasks involve searching for information and recording it for
future use. This might include looking up information on
search engines, reading articles on news apps, checking
facts on educational or reference apps, and then saving or
organizing this information in note-taking apps.

Web Shopping. Shopping tasks encompass a range of
activities related to purchasing products online. Users may
start by searching for a product on one app, comparing
prices on different e-commerce platforms, checking reviews
and ratings on review apps or websites, and finally making
a purchase.

Media Entertainment. Media entertainment tasks are
about activities involving video and music streaming apps.
Users may browse for new content on video platforms like
YouTube or Netflix, stream music on services like Spotify
or Apple Music, and switch between different media apps
to manage playlists or download content.

Social Sharing. This task involves activities where users
share content across different social media platforms. This
could include taking photos or videos with the camera app,
editing them using a photo or video editing app, and then
sharing them on multiple social media platforms like Insta-
gram, Facebook, Twitter, or TikTok.

Multi-Apps. Multiple-app tasks involve more complex
operations that require three or more apps to complete. For
example, cooking food with an online recipe might involve
finding the recipe of the food, recording the recipe to a note-
taking app, and buying the ingredients online(Fig. 1).

8.2. Action Set
Our recording system utilizes Android Studio to simulate
GUI navigation and virtualize various devices. We use the
Android Debug Bridge (ADB) to retrieve device informa-
tion and status, such as the coordinates of click events, and
to monitor a wide range of functional keys. The details of
the action set in our Android emulator are presented in Ta-
ble 5.

8.3. Fine-grained Episode Annotation Generation
Fine-grained episode annotations consist of two compo-
nents: low-level instructions and semantic annotations. Ex-
amples of the fine-grained annotations can be found in
Fig. 7.

Low-Level Instruction. For each step within an
episode, we provide GPT-4o with the high-level instruc-
tion corresponding to the episode, along with the action and
screenshot associated with the current step. Additionally,
for actions such as CLICK and LONG PRESS, we supply
an additional image featuring a bounding box to indicate
the click coordinates. All images are configured with the
fidelity parameter set to ‘high’. The prompt utilized is pro-
vided in Fig. 11.

Semantic Annotation. We use GPT-4o to generate se-
mantic annotations in an alternating and iterative manner,
following the sequential order of steps within each episode.
Specifically, the process begins by providing the current
episode’s high-level instruction along with the actions and
decision rationale from previous steps, prompting GPT-4o



Table 5. The argument and functionality of different actions in GUIOdyssey. ‘pos1’ and ‘pos2’ denote the position (x, y).

Action Argument Functionality

CLICK [pos1] click the on-screen position

LONG PRESS [pos1] press the screen for a long time to copy texts or download images

SCROLL [pos1, pos2] scroll the screen from position 1 to position 2

TYPE text type text with keyboard

COMPLETE - the sign that the instruction has been completed

IMPOSSIBLE - the sign that the instruction cannot be completed

HOME - go to the home screen

BACK - go to the previous screen

RECENT - go to the previous App

to generate the contextual information for the current step.
Subsequently, using the generated contextual information,
the high-level instruction, the screenshot image, and the ac-
tion corresponding to the current step, GPT-4o is prompted
step-by-step to generate the screen description and decision
rationale for the current step. This iterative process contin-
ues until all semantic annotations for each step within the
episode are completed in sequence. Similarly, for actions
such as CLICK and LONG PRESS, we supply an additional
image with a bounding box indicating the click coordinates.
All images are configured with the fidelity parameter set to
‘high’ to ensure precision. The prompts used for generating
these annotations are provided in Fig. 12 and Fig. 13.

8.4. Examples
An example of episodes in our GUIOdyssey is shown in
Fig. 6, while examples of semantic annotations can be
found in Fig. 7. An example of an annotation for a task
that could not be successfully completed and ends with the
IMPOSSIBLE action can be found in Fig. 8 and Fig. 9.

As mentioned in Sec. 5.1, we use SAM2 [37] to assist in
evaluating whether the model’s output actions are correct.
Fig. 10 provides examples of bounding boxes for clicked
elements obtained through SAM2 segmentation.

8.5. Data Format
Each field of annotation is as follows.

episode id: the unique identifier of this episode.
device info: the detailed information of the virtual de-

vice from which the episode was collected, including the
device model, screen resolution, and other device-related
details.

task info: the detailed information of the task from
which the episode was collected, including the task cat-
egory, the app used, the high-level instruction, and other
task-related details.

step length: the total number of steps in this episode.
steps: a list of steps in this episode. Each step in the

list includes the file path of the screenshot, executed action
and its corresponding parameters (e.g., the coordinates for
a click action), the low-level instruction, the semantic an-
notation, the bounding box obtained from SAM2 segmenta-
tion, and additional recorded information such as the overall
scroll trajectory for scroll actions and annotator notes.

9. Experiment Details
9.1. Detailed description of four different setups.
The following details the four different setups in
GUIOdyssey.

i) Train-Random & Test-Random. We randomly parti-
tioned all the episodes in the dataset into training and testing
sets using a ratio of 80% to 20% as the standard approach to
divide the dataset. It can assess the in-domain performance
of OdysseyAgent.

ii) Train-Task & Test-Task. In this setup, We propor-
tionally sampled meta-tasks from six categories, maintain-
ing approximately a 6 : 1 ratio for the training and test sets.
The tasks in the test set differ significantly from those in the
training set. This partitioning method allows for a robust
assessment of an agent’s generalization capabilities across
diverse tasks.

iii) Train-Device & Test-Device. To evaluate an agent’s
generalizability across different and unseen devices, we se-
lected episodes annotated on the Tablet, which differs sig-
nificantly from other devices, as the test set. We obtained
1, 381 episodes as the test set and 6, 953 episodes as the
training set.

iv) Train-App & Test-App. This split is aimed at eval-
uating the agent’s performance on unseen Apps and App
combinations. First, we calculated the frequency of app us-
age in the dataset and categorized the apps into 25 classes



Table 6. The impact of different semantic annotations on OdysseyAgent across four different splits. We use high-level instructions for both
training and evaluation. Performance is assessed using AMS and SR as metrics. SD, CI, and DR denote screen description, contextual
information, and decision rationale, respectively.

Semantic Annotation Test-Random Test-Task Test-Device Test-App Overall
SD CI DR AMS SR AMS SR AMS SR AMS SR AMS SR

(1) ✗ ✗ ✗ 75.79 9.38 54.36 0.09 61.20 1.88 63.03 7.70 63.60 4.76

(2) ✓ ✗ ✗ 75.18 8.94 54.06 0.00 64.41 2.03 64.91 8.47 64.64 4.86
(3) ✗ ✓ ✗ 75.42 10.04 55.71 0.00 62.52 3.19 64.24 5.30 64.47 4.63
(4) ✗ ✗ ✓ 77.71 11.44 55.60 0.26 65.88 4.63 65.74 7.96 66.23 6.07

(5) ✗ ✓ ✓ 77.23 11.16 56.93 0.18 63.87 2.24 66.32 7.87 66.09 5.36
(6) ✓ ✗ ✓ 77.24 10.88 57.15 0.00 63.55 2.17 67.04 9.67 66.24 5.68
(7) ✓ ✓ ✗ 76.58 10.14 57.13 0.26 64.48 3.91 66.27 7.96 66.11 5.57

(8) ✓ ✓ ✓ 78.24 11.62 56.19 0.26 66.63 5.07 65.89 8.81 66.74 6.44

(e.g., Video, Music) based on their characteristics. Then, we
selected a few apps with the lowest occurrence from each
class to form the test app set. Subsequently, we partitioned
the episodes that utilized the app in the test app set into the
Test-App set, maintaining an approximately 85% to 15%
ratio between the training set and the test set.

9.2. Training Details.

To train OdysseyAgent, we employ the AdamW optimizer
with a learning rate of 2e−5 and utilize a cosine learning
rate schedule. We set β1 and β2 to 0.9 and 0.95, respec-
tively, and use a weight decay of 0.1. Additionally, we uti-
lize a global batch size of 128 and implement DeepSpeed
ZERO2-style data parallelism. During training, OdysseyA-
gent treats each action step as an individual training sam-
ple. The input consists of the task instruction, the cur-
rent screenshot, and the previous 4 actions and screenshots
(i.e., δ = 4), while the output corresponds to the action for
the current step. By default, OdysseyAgent is trained sep-
arately on Train-Random/Task/Device/App for one epoch,
excluding the semantic annotation component. When train-
ing includes semantic annotations, these annotations are
converted into single-turn QA pairs, which serve as addi-
tional training samples (i.e., semantic annotations are in-
troduced only during training-time). Any training config-
uration that incorporates semantic annotations is explicitly
noted. The entire training process requires approximately
32 A100 hours to complete.

9.3. Prompt for Evaluation.

We utilize the prompt shown in Fig. 14 to evaluate the
performance of GPT-4V, GPT-4o, Claude3.5-sonnet, and
InternVL2-Pro. For SphAgent and CogAgent, we tested
them following their officially recommended methods [9,
23].

10. More Experiments
10.1. History Resampler vs. Multi-Image Training.
We evaluate different approaches for processing historical
screenshot images. Qwen-VL supports multi-image input
by interleaving image and text tokens, but this leads to a
high token overhead (e.g., 1024 tokens for four historical
steps). Our history resampler compresses this to 256 to-
kens, greatly improving efficiency. As shown in Table 7,
both approaches achieve comparable performance, but the
history resampler significantly enhances training and infer-
ence efficiency.

Table 7. The average AMS for HL and LL instructions across
4 splits, along with the number of historical screenshot tokens,
inference metrics (Time to First Token (TTFT) and Tokens per
Second (TPS)), and training GPU hours.

strategy HL LL Token Count TTFT ↓ TPS ↑ GPU Hours

history resampler 63.60 82.44 256 0.71 20.27 32
multi-image 65.04 82.34 1024 0.98 17.05 48

10.2. The effect of different semantic annotations.
We assess the impact of different semantic annotations in
GUIOdyssey (i.e., screen description, contextual informa-
tion and decision rationale) on model performance in both
in-domain and out-of-domain settings. The results are pre-
sented in Table 6. A comparison of experiments (1)–(4)
shows that all three components contribute positively, but
engaging in detailed reasoning before making decisions is
more important than understanding current screen informa-
tion or summarizing historical processes in cross-app tasks.
Experiments (5)–(8) further indicate that using two or more
types of semantic annotations generally outperforms using
a single annotation type. Specifically, using all semantic an-
notations yields the best results and improves AMS by 3.14



and SR by 35% compared to training without any semantic
annotations. These findings suggest that teaching the model
to understand the reasoning behind each action—similar to
how humans observe, understand, review completed steps,
and reason thoroughly before deciding—can be beneficial
for improving performance in both in-domain and out-of-
domain cross-app tasks.

10.3. Transferability of instructions at different lev-
els of granularity.

As shown in Table 8, models trained on high-level instruc-
tions exhibit significantly better transferability across dif-
ferent levels of instruction granularity compared to those
trained on low-level instructions. Furthermore, training on
both instruction granularities outperforms training on a sin-
gle granularity, a phenomenon similar to what has been ob-
served in single-app tasks [26].

10.4. Transferability across different devices.
We utilize our GUIOdyssey dataset to conduct additional
experiments to evaluate the generalization capabilities of
OdysseyAgent beyond the initial experimental setup. we
test the OdysseyAgent’s adaptability by using data from one
device as the test set while training on data from the re-
maining five devices. The results of these experiments are
presented in the Table 9, demonstrating the model’s per-
formance across different devices. The model exhibits the
weakest transferability on tablet devices, which we attribute
to the significant differences in user interface layouts be-
tween tablets and smartphones. Furthermore, the model’s
transferability on small phones and foldable devices is also
suboptimal. We surmise that the disparity in screen resolu-
tion compared to other phone models may contribute to this
underperformance.

Table 8. The results for OdysseyAgent trained and tested on Train-
Random/Test-Random with both high-level and low-level instruc-
tions are presented, with AMS as the evaluation metric. HL and
LL denote high-level and low-level instructions, respectively.

Testing Instructions Training Instructions
HL LL HL + LL

HL 75.79 29.39 78.96
LL 71.26 86.88 88.84

10.5. Whether cross-App tasks benefit single-App
tasks.

We further investigate whether cross-app tasks benefit
single-app performance by evaluating the impact of dif-
ferent training data compositions under controlled condi-
tions. Specifically, we randomly sample 50k training sam-
ples each from GUIOdyssey, AITW, and AndroidControl

Table 9. Performance Evaluation of OdysseyAgent Across Differ-
ent Devices. Each Device serves as a test set while the remaining
five devices are used as training sets.

Evaluation Device Resolution AMS SR

Pixel 7 Pro 1, 440× 3, 120 75.91 7.44
Pixel 8 Pro 1, 344× 2, 992 74.67 6.05
Small Phone 720× 1, 280 71.68 3.77
Medium Phone 1, 080× 2, 400 73.05 5.45
Pixel Fold 2, 208× 1, 840 67.67 4.48
Pixel Tablet 2, 560× 1, 600 61.20 1.88

(denoted as Ody50k, AITW50k, and AC50k, respectively)
and evaluate their performance on AndroidControl, which
provides both in-domain and out-of-domain scenarios. As
shown in Table 10, we find that incorporating cross-app data
from GUIOdyssey consistently enhances performance in
most single-app scenarios, whereas adding AITW data sur-
prisingly yields limited improvements or even performance
degradation. This suggests that the more complex cross-app
tasks in GUIOdyssey can benefit single-app tasks.

Table 10. Effectiveness of Different Training Data on the Android-
Control. The evaluation metrics are the action matching score
(AMS).

Training Data IDD category unseen app unseen task unseen Overall

AC50k 60.43 54.46 50.00 72.10 59.25
AC50k + AITW50k 60.69 55.26 45.19 68.84 57.50
AC50k + Ody50k 61.48 54.61 50.96 72.46 59.88



“Open the Chrome browser.”
CLICK: [525, 912]

instruction: Utilize Chrome to research the key property of a Triangle and compile your findings into a concise document using Google Docs.

device_name: Pixel Tablet
category: Information_Management
app: ["Chrome",  "Google Docs"]
step_length: 16

“Tap the search bar.”
CLICK: [589, 244]

“Clear the current search query.”
CLICK: [976, 172]

"Type 'the most important property of 
triangle' in the search bar."

TEXT: the most important property of triangle

“Initiate the search query.”
 CLICK: [895, 696]

“Scroll to copy the related results.”
 SCROLL: [661, 622], [573, 671]

“Copy the highlighted text.” 
CLICK: [471, 576], [471, 576]

“Return to the home screen.” 
CLICK: HOME

“Open the Google Docs app.”
 CLICK: [580, 272]

“Create a new document in Google Docs.”
 CLICK: [954, 919]

“Create a new document.”
 CLICK: [967, 826]

“Select the copied text from the 
keyboard.”

CLICK: [477, 506]

“Select the text at the beginning of 
the document.”
CLICK: [265, 308]

“Type ‘the most important property of a 
triangle:’ into the document.”

TEXT: the most important property of triangle: 

“Press the Enter key.”
CLICK: [904, 686]

“Task completed.”
COMPLETE

Figure 6. An example of episodes in our GUIOdyssey.



Figure 7. Examples of fine-grained annotations in GUIOdyssey.



High-Level Instruction: Utilizing Threads and Booking.com, devise a travel itinerary for a 
trip to New York City, USA, and secure your lodging arrangements.

CLICK: [162, 353]

low_level_instruction: Open the Threads app.

description: This is a screenshot of an Android home screen 
displaying various app icons, including Threads, Booking.com, and 
Airbnb.

intention: I am selecting the Threads app to gather ideas and 
recommendations for my travel itinerary to New York City. This step 
is crucial for accessing social media content that might offer 
insights or suggestions for the trip.

Context: Task just started, nothing has been done.

step: 1

High-Level Instruction: Utilizing Threads and Booking.com, devise a travel itinerary for a 
trip to New York City, USA, and secure your lodging arrangements.

CLICK: [162, 353]

low_level_instruction: Open the search section.

description: This is a screenshot of a social media app showing a 
post featuring pictures of a cute cat. There is also a prompt to 
turn on push notifications at the top of the screen.

intention: I am choosing to click on the search icon to explore 
more content related to travel ideas and recommendations for New 
York City. This action will help me gather information and 
inspiration for planning my travel itinerary.

Context: So far, the user has navigated to the main screen of their 
phone and accessed the Threads app. 

step: 2

High-Level Instruction: Utilizing Threads and Booking.com, devise a travel itinerary for a 
trip to New York City, USA, and secure your lodging arrangements.

CLICK: [274, 163]

low_level_instruction: Tap on the search bar.

description: This is a screenshot of the search page in the Threads 
app, displaying a list of verified profiles with follower counts 
and follow buttons.

intention: I am selecting the search bar to input keywords related 
to New York City travel ideas. This action will help me find 
relevant content and recommendations to enhance my travel itinerary.

Context: So far, the user has navigated to the home screen of their 
phone and accessed the Threads app. They have also utilized the 
search function within the app to explore content related to travel 
ideas and inspiration for their trip.

step: 3

Figure 8. Example of an annotation for an unsuccessful task, ending with the IMPOSSIBLE action.



High-Level Instruction: Utilizing Threads and Booking.com, devise a travel itinerary for a 
trip to New York City, USA, and secure your lodging arrangements.

TYPE: New York City, USA itinerary

low_level_instruction: Enter 'New York City, USA itinerary' in the 
search bar.

description: This is a screenshot of a search interface on a mobile 
app showing recent searches for travel itineraries such as Venice, 
Italy and Tokyo, Japan. The user is currently typing 'New York City, 
USA itinerary' in the search bar.

intention: I am entering 'New York City, USA itinerary' in the 
search bar to gather ideas and recommendations for planning my trip. 
This action is appropriate as it allows me to find relevant 
information and suggestions to enhance my travel itinerary for New 
York City.

Context: So far, the user has navigated to the home screen of their 
mobile phone to efficiently manage travel planning tasks. They have 
accessed the Threads app and selected the search bar.

step: 4

High-Level Instruction: Utilizing Threads and Booking.com, devise a travel itinerary for a 
trip to New York City, USA, and secure your lodging arrangements.

CLICK: [162, 353]

low_level_instruction: Initiate the search query.

description: This is a screenshot of a mobile search interface 
where the user has entered 'New York City, USA itinerary' into the 
search bar. The keyboard is visible, and there is an option to 
search for the entered query.

intention: I am choosing to tap the search button to initiate a 
search for 'New York City, USA itinerary' within the Threads app. 
This action will help me find relevant content and recommendations 
to enhance my travel planning for the city. By executing this 
search, I expect to gather useful ideas and suggestions for my 
itinerary.

Context: So far, the user has navigated to the home screen of their 
mobile phone and accessed the Threads app to gather ideas for a 
travel itinerary to New York City. They have utilized the search 
feature within the app to input relevant keywords, aiming to find 
content and recommendations to enhance their travel planning for 
the city.

step: 5

High-Level Instruction: Utilizing Threads and Booking.com, devise a travel itinerary for a 
trip to New York City, USA, and secure your lodging arrangements.

IMPOSSIBLE

low_level_instruction: Task could not be completed.

description: This is a screenshot of a search result page in the 
Threads app displaying the message 'No results' for the query 'New 
York City, USA itinerary'. The screen shows that no content was 
found matching the search criteria.

intention: The task could not be completed because the search for 
'New York City, USA itinerary' in the Threads app yielded no 
results. This lack of content prevented the gathering of ideas and 
recommendations necessary for planning the travel itinerary.

Context: So far, the user has navigated to the Threads app on their 
mobile phone to gather travel ideas and recommendations for a trip 
to New York City. They have utilized the search function within the 
app to find relevant content by entering 'New York City, USA 
itinerary' as the search term.

step: 6

Figure 9. Example of an annotation for an unsuccessful task, ending with the IMPOSSIBLE action.



CLICK: [923, 609]

SAM2_BBOX: [875, 553, 947, 633] 

CLICK: [379, 838]

SAM2_BBOX: [266, 812, 398, 886] 

CLICK: [675, 374]

SAM2_BBOX: [528, 349, 736, 405] 

Figure 10. Examples of bounding boxes for UI elements segmented by SAM2. The actual click locations are indicated by blue ‘+’ symbols,
while the red rectangles outline the bounding boxes obtained from the SAM2.

<img>current_screenshot.png</img>
<img>current_screenshot_w_labels.png</img>
Based on the original and marked screenshots of an Android mobile phone, where the marked screenshot is the original screenshot marked with action location, please follow the 
instructions below:

Low-Level Instruction Identification
- Identify the low-level instruction that the current action represents, such as “Go to the alarm section.”

P.S.:
- When following these instructions, use natural language, avoid mentioning technical details (such as action coordinates) or direct use of action tags (such as "PRESS_HOME").

Output Format:
The output should be in JSON format as follows:
{{"instruction": "low-level instruction that the current action represents in the desired format"}}

Please return the result in pure JSON format, without any json tags like ```json ```.

Figure 11. Prompts for generating low-level instruction.

You are completing the task: {task} on a mobile phone, and the actions you have performed along with their respective intentions are listed in chronological order as:
{intentions}

Please follow the instructions below:
- Summarize the completed progress of the task based on the actions performed and their intentions in 2-3 sentences.
- Ensure your summary is purely focused on completed actions, and avoid provide further insight.
- Create a logically connected summary, rather than simply listing each action in detail.
- Avoid using any time-sequence phrases, such as 'after completing,' 'upon finishing,' or similar expressions.
- Use a completed-action tone, describing the progress as if each step has already occurred.
- Use an objective tone and describe concisely from an impersonal perspective.
- Format the context as follows: "So far, [summary of what has been accomplished]."

P.S.:
- When following these instructions, use natural language, avoid mentioning technical details (such as action coordinates) or direct use of action tags (such as "PRESS_HOME").

Output Format:
The output should be in JSON format as follows:
{{
"context": "a 2-3 sentence summary of task progress up to this point in the desired format"
}}
Please return the result in pure JSON format, without any json tags like ```json ```.

Figure 12. Prompts for generating contextual information.



<img>current_screenshot.png</img>
<img>current_screenshot_w_labels.png</img>
Based on the original and marked screenshots of an Android mobile phone, where the marked screenshot is the original screenshot marked with action location, please follow the 
instructions below:

1. Screenshot Description:
- Analyze and describe the overall content of the current screenshot.
- Provide a concise 2-3 sentence summary of the screenshot content.
- Format the description as follows: "This is a screenshot of [summary of the screenshot content]."

2. Intention Recognition:
- You are viewing the current screenshot while completing the task: {task} on a mobile phone, and you have chosen to perform the action: {action}. Analyze the reasoning behind this 
action choice.
- The progress made on the task before this action is: {context}. 
- Focus on why this action is appropriate within the current context, using present tense as if actively solving the problem.
- Explain your intention in the first person.
- Format the intention in 2-3 sentences as follows: "To [goal or purpose], I choose to [action to take]. This allows me to [result or benefit]."

P.S.:
- When following these instructions, use natural language, avoid mentioning technical details (such as action coordinates) or direct use of action tags (such as "PRESS_HOME").

Output Format:
The output should be in JSON format as follows:
{{
"description": "2-3 sentences summarizing the current screenshot content in the desired format",
"intention": "2-3 sentences explaining reasoning for choosing this action in the desired format”
}}

Please return the result in pure JSON format, without any json tags like ```json ```.

Figure 13. Prompts for generating screen description and decision rationale.



Prompt for evaluating closed-source proprietary LVLMs

<img>current_screenshot.png</img>
Given a device screenshot and an instruction, please provide the corresponding action.

Available Actions:
CLICK: <coordinate>
LONG_PRESS: <coordinate>
TYPE: <text>
SCROLL: UP
SCROLL: DOWN
SCROLL: LEFT
SCROLL: RIGHT
PRESS_BACK
PRESS_HOME
PRESS_RECENT
IMPOSSIBLE
COMPLETE

All <coordinates> are in the form (x, y), representing the coordinates to click or long press. The coordinate of the top-left 
corner is (0, 0), and the coordinate of the bottom-right corner is (1000, 1000).

The instuction is: {instuction}
The historical actions are: {history_actions}

Based on the screenshots and the available actions, provide the next step directly.

Prompt for evaluating closed-source proprietary LVLMs with OmniParser

<img>current_screenshot.png</img>
<img>current_screenshot_w_labels.png</img>
Given two device screenshots and an instruction, provide the corresponding action. 
The first image is the original screenshot, and the second is the same screenshot with numeric tags on different interface 
elements. If the action requires clicking or pressing, choose the closest numeric tag that aligns with your intended location.

Here are the Available Actions:
CLICK: <element_idx chosen from the second screen>
LONG_PRESS: <element_idx chosen from the second screen>
TYPE: <text>
SCROLL: UP
SCROLL: DOWN
SCROLL: LEFT
SCROLL: RIGHT
PRESS_BACK
PRESS_HOME
PRESS_RECENT
IMPOSSIBLE
COMPLETE

The instuction is: {instuction}
The historical actions are: {history_actions}

Based on the screenshots and the available actions, provide the next step directly.

Figure 14. The prompt for evaluating closed-source proprietary Large Vision Language Models (LVLMs).


