Supplementary Material of Hierarchical Divide-and-Conquer Grouping for
Classification Adaptation of Pre-Trained Models

A. Detailed Information of Hierarchical
Grouping

As mentioned in Section 3, we progressively divide the uni-
fied test space into hierarchical ones. The whole grouping
process is given in Algorithm. 1. In addition, we also ex-
plore the optimal depth of the proposed hierarchical group-
ing structure. Specifically, we not only change the num-
ber of separation with balanced way (i.e., keep the same
depth for base and novel branches) as shown in Table. 1 of
main paper, we also evaluate the unbalanced separation in
Table. b. Intuitively, when we adopt two step i.e., group-
ing for novel branch of AwA?2, we observe a slight degra-
dation. Therefore, we speculate that the optimal depth for
each datasets or different branches is inconsistent. In fact,
we can search the optimal best plan by greedy search. As we
experimentally explore the performance of popular bench-
marks, we set the depth of each dataset by 2 to maintain the
simplicity of the method.

In Fig. a, we report the distributions of scored, scoreP
and score”, respectively. Notably, the first column high-
lights a strikingly low fractional coincidence across differ-
ent domains, underscoring the remarkable ability of our
method to effectively segregate the base and novel domains
within a straightforward and training-free framework.

B. Contribution of Each Strategy

In order to better explore what strategies can bring signifi-
cant gains, we provide Table. a. It can be seen that after the
information of VLM was introduced into f-VAEGAN and
TF-VAEGAN, there was a significant improvement in the
base classes, but it is accompanied by a serious degradation
of novel performance. This indicates that directly apply-
ing VLM to the original zero-shot structure is not appropri-
ate, as it will exacerbate prediction bias.When we compare
the proposed HDG-PSVMA method, we observe significant
improvements across all datasets, which confirms the effec-
tiveness of our proposed grouping strategy even under the
strict zero-shot setting. Furthermore, compared with CLIP,
our method performs particularly outstanding in terms of
improving the performance on novel classes. This indi-
cates that the hierarchical divide-and-conquer grouping in-

deed broke the prior data dependency problem in the VLMs
adaptation process and improve the model’s generalization
ability.

C. LLMs-guided descriptions

Examples for LLMs-guided Descriptions. To enhance the
diversity of the generation samples, we propose a LLMs-
guided method to generate various descriptions for novel
classes. Here, we provide some examples which are ob-
tained by GPT-4 on AwA2:

bat:

The bat hung upside down from the cave ceiling, its
wings folded neatly around its body.

The bat flew gracefully through the night sky, silhouetted
against the full moon.

The bat clung to the tree trunk, its sharp claws digging
into the bark.

The bat’s eyes gleamed in the darkness, reflecting the
light from the distant streetlamp.

The bat swooped low over the field, its keen ears detect-
ing the flutter of insect wings.

The bat nestled among the leaves, hidden from predators
by its mottled brown fur.

The bat spread its wings wide, revealing the delicate
webbing between its fingers.

The bat darted through the air, executing sharp turns to
avoid obstacles.

The bat emitted a series of high-pitched squeaks, using
echolocation to navigate.

The bat landed softly on the window ledge, its nose
twitching as it sniffed the air.

blue whale:

The blue whale surfaced slowly, sending a towering
spout of mist into the air.

The blue whale glided gracefully through the ocean, its
massive body cutting through the water with ease.

The blue whale breached, its enormous body rising out
of the water before crashing back down with a thunderous



Methods Backbone AwA2 CuB SUN

B N H B N H B N H
f-VAEGAN [7] Res-101 70.6 57.6 63.5 60.1 484 53.6 38.0 45.1 41.3
F-VAE+SHIP [6] VLMs 959953 61.2, 356 747 112 8221951 225 _925.9 353_18.3 - - -
TF-VAEGAN [3] Res-101 75.1 59.8 66.6 64.7 52.8 58.1 40.7 45.6 43.0
TE-VAE+SHIP [6] VLMs 9631212  437_16.1 60.1_6.5 844 1097  211_317 340-241 - - -
PSVMA [2] ViT-Base 71.3 73.6 754 77.8 70.1 73.8 453 61.7 52.3
HDG-PSVMA (Depth=1, Frozen) Vit-Base 78.9 75.3 77.1 78.0 72.5 75.1 492 63.9 55.6
HDG-PSVMA (Depth=1, Tuning) ~ Vit-Base 791,15 772436 781407 783405  7T44,a5 763,25 5561103 644,07 597,74
CLIP [5] VLMs 92.9 86.6 89.6 55.1 549 55.0 40.2 49.4 443
HDG-CLIP (Depth=1, Frozen) VLMs 93.0 90.2 91.6 57.1 71.5 63.5 45.7 66.1 54.0
HDG-CLIP (Depth=1, Tuning) VLMs 93.9 94.2 94.0 73.8 752 74.5 79.8 71.2 75.3
HDG-CLIP (Depth=2, Tuning) VLMs 94541 .4 941475 9434147 7841233 78.0123.1 7824 23.2 8144412 7334239 77.1432.8

Table a. GZSC performance (%) comparisons on three benchmarks. “Frozen” indicates that no fine-tuning is performed on the subspace.
Depth=1 refers to inter-class grouping. Depth=2,3 refers to recursive intra-class grouping. Gain or degradation refers to the performance
relative to same variant. Our method is marked with a blue background color

Algorithm 1 Hierarchical Grouping Strategy

Input: z; € Xyqs.: Base Image Sets; 2; € G: Novel Generation Image Sets; x; € X;cs:: Test Image Sets; T : Threshold
Output: Fine-grained class labels: Basel, Base2 and Novell, Novel2

1: for each z; in Xyeg:
2: repeat

3: compute multi-modal distance in Eq.2 and then compute the scores of score

4, score® in Eq.3 and Eq.6, respectively;

while j < max number of test images and x; has not been grouped do

4
5: if score® > T then

6: assign coarse-grained stage label Base to x;

7 if score® > 0 then

8 assign fine-grained stage label Basel to x;
9

: else
10: assign fine-grained stage label Base2 to z;
11: end if
12: else
13: assign coarse-grained stage label Novel to z;
14: if score™ > 0 then
15: assign fine-grained stage label Novell to x;
16: else
17: assign fine-grained stage label Novel2 to x;
18: end if
19: stop
splash. navigated the cold, nutrient-rich waters.

The blue whale’s tail fluke emerged from the sea as it
prepared to dive deep into the abyss.

The blue whale swam alongside a pod of dolphins,
dwarfing them with its immense size.

The blue whale’s mouth opened wide, filtering vast
amounts of krill through its baleen plates.

The blue whale’s eye, small in comparison to its body,
scanned the ocean depths.

The blue whale floated near the surface, its smooth blue-
gray skin glistening in the sunlight.

The blue whale’s call echoed through the water, a deep,
resonant sound that could travel for miles.

The blue whale moved slowly, conserving energy as it

bobcat

The bobcat crouched low in the tall grass, its eyes fixed
on its prey.

The bobcat leapt gracefully onto a rock, scanning the
area for any signs of movement.

The bobcat’s ears twitched, picking up the faint rustle of
leaves in the wind.

The bobcat padded silently through the forest, its fur
blending seamlessly with the underbrush.

The bobcat snarled, revealing sharp teeth as a warning
to intruders.



Table b. Effects of the proposed grouping strategy depth. Depth=2 for Base Only denotes that we conduct two stage grouping for base

branch and one stage for novel classes.

Methods AwA2 CUB
B N H | B N H
Depth=1 93.9 94.2 94.0 73.8 75.2 74.5
Depth=2 for Base and Novel 94.5 94.1 94.3 78.4 78.0 78.2
Depth=2 for Base Only 94.5 94.2 94.3 78.4 75.2 76.8
Depth=2 for Novel Only 93.9 94.1 94.0 73.8 78.0 76.2
[ Base 25 [MBase 1 A 20.0 == Novel 1
8 Novel Base2 || Novel2 |
//\ 20 I 17.5 [
6 | i 15.0 il
z | “\ 15 | \ 12.5 X |
g, , / 10.0 | &k
A /‘ 10 75 £
2 5 5.0 E
/,/ 25
L 0.0 02 04 0515 0.10 0.05 000 005 010 005591 00 01 02
1
0 [Base 14 /)\D Base 1 17.5 [ Novel 1
3 Novel 12 / Base 2 15 Novel 2
A " |
Z \ 8 HiH 10. )
By ,/ \ 6 / | 75 i
5 / | 4 | 5.0 \
/ \ 2 \ 25
05261 00 01 02 03 04 0 0.1 00 01 02 00675610 0.05 0.00 0.05 0.10 015
[ Base = i Base 1 15.0 I Novel 1
6 Novel Base 2 / Novel 2
| 20 12,5 \
%5 [ /
24 /» \ 15 ﬂ\ 10.0
A3 / \ 10 / 75
5 / 5.0 / \
\
1 / 3 / 25
%2 00 02 o4 06 07§10 605 000 005 010 015 09915 -0.10 -0.05 0100 0,05 0.10 015

Figure a. Supplementary analysis of Figure 3 in the main paper. From top to bottom, we report the density maps of score? (first column),
score® (second column), and score™ (third column) on AwA2, CUB and SUN, respectively.

The bobcat’s tail flicked back and forth as it prepared to
pounce.

The bobcat perched on a tree branch, surveying the
ground below for any potential meals.

The bobcat stretched out in a patch of sunlight, enjoying
the warmth on its fur.

The bobcat’s keen eyes caught the glint of a rabbit’s fur
in the moonlight.

The bobcat slinked through the shadows, moving with a
predator’s stealth and precision.

dolphin:

The dolphin leapt out of the water, performing a graceful
arc before splashing back down.

The dolphin swam alongside the boat, its dorsal fin cut-
ting through the waves.

The dolphin’s playful nature was evident as it chased af-
ter a school of fish.

The dolphin’s sleek, gray body glistened in the sunlight
as it rode the surf.

The dolphin communicated with its pod using a series of
clicks and whistles.

The dolphin flipped its tail energetically, propelling itself
through the water.

The dolphin surfaced for air, its blowhole emitting a



A photo of a horse

LLMs-guided

Concept Selection

Figure b. Examples of different descriptions.Top: The generation samples which are generated by A photo of a horse. Middle: The
generation samples which are generated by LLMs-guided descriptions. Bottom: The concept selection process. The red boxes represent

samples that were discarded.

quick burst of mist.

The dolphin interacted with swimmers, gently nudging
them with its snout.

The dolphin performed acrobatics, delighting the on-
lookers with its agility.

The dolphin’s intelligent eyes observed the divers curi-
ously as they explored the reef.

D. Details and Examples for Generation

In addition, we provide some examples in Fig. b. By com-
paring the first row and second row, we can observe that
the generation samples equipped with LLMs-guided strat-
egy have better diversity than the others. For instance,
the horses in the second row have more colors, poses and
backgrounds, and are closer to the state of the horse in na-
ture. This indicates that the proposed LLMs-guided strategy
ensures diversity while not sacrificing semantic relevance.
Further, we visualize the process of concept selection at the
bottom of Fig. b. We can see that the discarded samples
have obviously different distribution than preserved ones.
As for GPU and time utilization, we conduct all the gen-
eration processes with Stable-Diffusion-XL [4] on Nvidia
RTX 4070Ti and the model generates an 1024*1024 image
about every 15 seconds.

E. Details of Normalized Mutual Information

The Normalized Mutual Information (NMI) [1] is com-
monly used in clustering evaluation to measure the simi-
larity between two clustering results. Formally, we have:

2 x I(X;Y)

NMI(X,Y) = )+ HY)’ ()

where I(X;Y') refers to Mutual information between X
and Y, H(X) and H(Y) represent the entropy of X and
Y, respectively. In this paper, we first assign labels of 0
to the base images (training set) Xpqse and 1 to the diffu-
sion model generated images G. Subsequently, we input
and predict all the base images into hypothetical classes us-
ing Eq.3 (in main paper). By evaluating the NMI between
the ground truth labels (i.e., H (X)) and the predicted la-
bels (i.e., H(Y')) across various threshold values (T), we
can quantify the extent of information about the true class
labels captured by the specific clustering or grouping out-
comes.
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