
Inpaint4Drag: Repurposing Inpainting Models for Drag-Based Image Editing
via Bidirectional Warping
– Supplementary Material –

Contents
S1. Supplementary Videos . 2
S2. Integration with More Inpainting Methods . 2
S3. Multi-round Interactive Editing . 3
S4. Discussion of Input Ambiguity . 4
S5. More Qualitative Results . 5
S6. Pseudo Code for Inpaint4Drag . 8
S7. Limitations . 9

1

S1. Supplementary Videos
Two supplementary videos are available on our project page https://visual-ai.github.io/inpaint4drag:
one demonstrating our bidirectional warping algorithm with visualizations, and another showcasing the real-time user inter-
face interaction.

S2. Integration with More Inpainting Methods
We integrate our framework with diverse image inpainting approaches, from early methods like LaMa [4] and DeepFillv2
[5] to recent generative model-based techniques [2]. While quantitative metrics in Tab. S1 show comparable drag editing
performance across methods, qualitative differences emerge in Fig. S1. Early approaches offer computational efficiency,
whereas generative methods sometimes produce more realistic results–a quality distinction not fully captured by existing
metrics. Our framework provides users flexibility to select the inpainting method best suited to their specific requirements,
balancing computational resources and visual fidelity.

Method DragBench-S DragBench-D
Mem(GB)↓ Time(s)↓ MD↓ LPIPS↓ MD↓ LPIPS↓

DeepFillv2 [5] 0.8 0.05 3.2 13.7 3.7 9.0
LaMa [4] 1.1 0.07 3.4 13.6 3.7 9.0
SD-XL-Inpaint [2] 8.1 1.3 3.2 12.5 3.8 8.8
SD-1.5-Inpaint [2] 2.7 0.3 3.6 11.4 3.9 9.1

Table S1. Comparison of different inpainting methods. MD and LPIPS values are scaled by 100. Time and GPU memory are measured at
512×512 resolution.

SD-1.5-InpaintLaMa DeepFillv2 SD-XL-InpaintInput Preview

Figure S1. Qualitative comparison of different inpainting methods. The figure illustrates how various inpainting approaches affect drag
editing results, highlighting differences in visual fidelity, artifact handling, and preservation of semantic content across traditional and
generative model-based techniques.

https://visual-ai.github.io/inpaint4drag

S3. Multi-round Interactive Editing
Our system enables fluid multi-round interactions, allowing users to execute sequential edits with minimal delay. In Fig. S2,
we demonstrate this capability through a chess sequence where pieces are repositioned in rapid succession to create a check-
mate scenario–highlighting our system’s responsiveness to iterative user inputs.

Figure S2. Multi-round interactive drag editing demonstrated through a three-move checkmate sequence including five consecutive edits.
Users select deformable regions (chess pieces) and drag them from handle points to target positions. Grid overlays in the preview columns
indicate areas requiring inpainting. Our method provides real-time preview (∼10ms) of the warping effect, followed by high-quality
inpainting results (∼0.3s). Existing approaches typically require minutes for inference and fail during the initial interaction.

S4. Discussion of Input Ambiguity
Previous drag editing methods [1, 3, 6] typically use sparse control points to guide deformation, with optional masking to
restrict editable regions. However, this sparse input format (shown on the left of each row in Fig. S3) introduces fundamental
ambiguity in deformation interpretation. Through our explicit region-based control (visualized in bottom-right insets), we
demonstrate how a single ambiguous drag input can be precisely controlled to achieve five distinct editing intentions - from
local manipulation to global translation. For instance, the same drag operation on a polar bear can be accurately interpreted
as body translation, forearm bending, hand raising, upper body stretching, or scene translation. We address this ambiguity by
requesting users to specify deformable regions through masking, treating each region as an elastic material where movement
smoothly propagates from control points throughout the connected area.

Sparse Input Translate body Bend forearm Raise hand Stretch upper body Translate scene

Translate head Squeeze head Rotate head Stretch right face Translate sculptureSparse Input

Translate arm Bend front body Translate body Bend arm Translate sceneSparse Input

Figure S3. Precise control over ambiguous drag operations. Left: Ambiguous sparse input from previous methods can represent at least five
different user intentions. Right: Through our explicit deformation-based control interface (bottom-right insets), we precisely implement
each distinct user intention, effectively eliminating ambiguity while maintaining intuitive interaction.

S5. More Qualitative Results
We present extensive qualitative results in Figs. S4 to S6. Our method allows users to specify handle points (red) and target
points (blue) with arrows defining deformation regions (highlighted in red). By applying elastic material principles directly
in pixel space, we achieve superior performance across diverse editing scenarios. The results demonstrate our method’s
effectiveness in facial edits, large-scale deformations, and precise local manipulations while maintaining geometric stability.
This advantage is particularly evident when handling significant boundary changes and occlusions, where our inpainting
models realistically complete both texture and background.

DragDiff. SDE-DragDiffEditorFastDrag Our Input Preview InpaintedSparse Input

Figure S4. Qualitative comparison of Inpaint4Drag with state-of-the-art methods: wildlife, artworks, flowers, birds, and landscapes.

DragDiff. SDE-DragDiffEditorFastDrag Our Input Preview InpaintedSparse Input

Figure S5. Qualitative comparison of Inpaint4Drag with state-of-the-art methods: portraits, interiors, statues, wildlife, still life, and sports.

DragDiff. SDE-DragDiffEditorFastDrag Our Input Preview InpaintedSparse Input

Figure S6. Qualitative comparison of Inpaint4Drag with state-of-the-art methods: urban scenes, landscapes, animals, pets, and reptiles.

S6. Pseudo Code for Inpaint4Drag
To complement the detailed description of our method of the main paper, we provide a concise algorithmic representation of
the data flow in Algorithm 1.

Algorithm 1: Inpaint4Drag: Drag-based Image Editing via Bidirectional Warping and Inpainting
Input: Image I , user-drawn mask M , handle points {hi} and target positions {ti}
Output: Edited image Iedit
Region Specification and Boundary Refinement:;
Ps ← SampleGridPoints(M) ; // Sample grid points from user mask
Mpred ← fSAM (I, Ps) ; // SAM prediction
Mdilated ← Dilate(M , K1); Meroded ← Erode(M , K1) ; // Create boundary constraints
M ← (Mpred ∩Mdilated) ∪Meroded ; // Boundary-guided refinement
Bidirectional Warping:;
C ← ExtractContours(M) ; // Get deformable regions
foreach contour C ∈ C do

Associate control points: (hi, ti)← {(hi, ti) | hi inside C};
Forward Warping: ; // Define target region boundary
foreach point p in C do

wi ← 1/(∥p−hi∥+ϵ)∑
j 1/(∥p−hj∥+ϵ) ;

pt ← p+
∑

i wi(ti − hi) ; // Weighted interpolation
Store mapping pair (p, pt);

end
C ′ ← transformed contour from forward warping;
Backward Mapping: ; // Ensure complete pixel coverage
foreach pixel pt within boundary of C ′ do

Find Nn nearest matched pixels {ptgti } with source positions {psrci };
ps ← pt +

∑Nn

i=1 wi(p
src
i − ptgti) ; // Local neighborhood interpolation

if ps ∈ [0,W)× [0, H) and pt ∈ [0,W)× [0, H) then
Store valid mapping (ps, pt);

end
end

end
Compute Warped Image and Inpainting Mask:;
foreach valid mapping pair (ps, pt) do

Iwarped(pt)← I(ps) ; // Transfer pixel values
end
Mwarped ← mask of pixels filled in warped image;
Mtemp ←M \Mwarped;
∂Mwarped ← boundary of Mwarped ; // Identify unmapped regions
Minpaint ← Dilate(Mtemp ∪ ∂Mwarped,K2) ; // Create buffer zone
Image Inpainting:;
Iedit ← Inpaint(Iwarped,Minpaint) ; // Apply inpainting model
return Iedit

S7. Limitations
While our method achieves significant improvements in efficiency and precision, it relies on accurate user-specified masks and
control points for optimal performance. Imprecise user inputs, such as masks that inadvertently include background elements
or poorly positioned control points, can lead to undesired deformation artifacts. Future work could explore understanding-
enabled models that automatically filter irrelevant background elements or provide intelligent suggestions for mask and
control point placement, reducing the burden on users to provide perfectly accurate inputs while maintaining the intuitive
nature of drag-based interaction.

References
[1] Xingang Pan, Ayush Tewari, Thomas Leimkühler, Lingjie Liu, Abhimitra Meka, and Christian Theobalt. Drag your gan: Interactive

point-based manipulation on the generative image manifold. In ACM SIGGRAPH, 2023. 4
[2] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent

diffusion models. In CVPR, 2022. 2
[3] Yujun Shi, Jun Hao Liew, Hanshu Yan, Vincent YF Tan, and Jiashi Feng. Instadrag: Lightning fast and accurate drag-based image

editing emerging from videos. arXiv preprint arXiv:2405.13722, 2024. 4
[4] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov, Naejin Kong,

Harshith Goka, Kiwoong Park, and Victor Lempitsky. Resolution-robust large mask inpainting with fourier convolutions. In WACV,
2022. 2

[5] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Free-form image inpainting with gated convolution. In
ICCV, 2019. 2

[6] Xuanjia Zhao, Jian Guan, Congyi Fan, Dongli Xu, Youtian Lin, Haiwei Pan, and Pengming Feng. Fastdrag: Manipulate anything in
one step. In NeurIPS, 2024. 4

	Supplementary Videos
	Integration with More Inpainting Methods
	Multi-round Interactive Editing
	Discussion of Input Ambiguity
	More Qualitative Results
	Pseudo Code for Inpaint4Drag
	Limitations

