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1. More Evaluation Results

Evaluate on synthetic datasets. For synthetic data, we
compared our method to several popular graphics engines,
including UE [7], Falcor [2], and Blender [3], to evaluate
image synthesis results. For our method, we employ the
GT intrinsic images as input conditions to generate the tar-
get image, while for rendering engines, we utilize complete
3D scenes to render the target images. As shown in Fig-
ure 1, various methods produced highly realistic photoreal-
istic images. However, compared to the images generated
by various engines, our method produces images that more
closely align with the realism of human cognition. To better
quantify the realism of the generated images, we addition-
ally computed the CLIP (Contrastive Language-Image Pre-
training) score [19, 20] and conducted a user study for gen-
erated results(refer supplementary for details). We present
the quantitative analysis results in Table 2, showing that our
method outperforms others in CLIP scores, LPIPS scores,
FID scores, and user studies.
Evaluate on real-world datasets. We evaluated Intrinsic-
ControlNet with untrained real-world data from the ADE
dataset, including indoor and outdoor data. Specifically, we
first predicted intrinsic images from real-world images and
used them as inputs to generate new images, then compared
the generated images with the original ones to evaluate their
similarity. As shown in Figure 1, even though the input in-
trinsic images are biased due to prediction, IntrinsicCon-
trolNet can still generate photorealistic images that closely
resemble the originals.

2. Training Detail

Our model is trained using 4 NVIDIA A6000 GPUs with a
batch size of 48 for 280k iterations based on Stable Diffu-
sion v2.1 pre-trained model [22]. For the inference process,
we adopt the DDIM sampler [23] with 50 sampling steps by
using a single NVIDIA A6000 GPU. We use the AdamW
optimizer with a fixed learning rate of 1 × 10−5 [15] and
weight decay of 0.01. During training, we center-croped the
image with 512 × 512 resolution. Empirically, λrealistic =
0.2, λgen = 1, λtg = 1, and λdis = 0.5

3. Datasets Preparation

Dataset composition. To ensure our model is versatile and
capable of handling diverse scene generation tasks, we train
it using a comprehensive mixed dataset. Table 1 provides
details on the composition, size, and sources of the var-
ious components within this dataset. This mixed dataset

includes a wide range of data types, such as real-world,
synthetic, indoor, outdoor, single-object datasets, as well as
datasets for embodied AI and autonomous driving. The di-
verse intrinsic image sources contribute to the robustness
of our model, while the inclusion of synthetic datasets al-
lows for better control over detailed structures and colors.
Meanwhile, real-world datasets ensure that the results pro-
duced by our model possess a high degree of realism. This
enriched mixed dataset enhances our model’s accuracy and
robustness in fitting both geometry and material properties.

4. Metrics and User Study
4.1. CLIP Score
The CLIP score [8] is calculated by determining the cosine
similarity between image and text embeddings, making it
particularly useful for tasks that require cross-modal under-
standing. In our task, we employ the BLIP model [13] to
extract a text prompt from various images, including scene
images synthesized by the graphics engine and real-world
photo images. We then enhance this prompt with the key-
words ’photo-realism’ to generate a comprehensive text de-
scription. We compute the CLIP score between this gen-
erated text description and the images produced by each
method.

4.2. LPIPS Score
LPIPS (Learned Perceptual Image Patch Similarity) [31]
is a metric designed to evaluate the perceptual similar-
ity between images. Unlike traditional pixel-level com-
parison methods, LPIPS assesses differences by analyzing
deep features extracted from the images. It utilizes a pre-
trained convolutional neural network, such as AlexNet, to
obtain these features and then computes the distance be-
tween them.

4.3. DINOv2 Similarity Distance
DINOv2 similarity distance. DINOv2 similarity dis-
tance [17] is a metric used to measure the similarity between
images, based on features extracted by the DINOv2 model.
We use this metric to evaluate the similarity between the
results generated by different methods and various architec-
tural designs of our model with the reference images.
DINOv2 self-similarity distance. We also employed the
DINOv2 self-similarity distance [17] to assess the consis-
tency between different parts of the image resulting from
object insertion. This metric helps evaluate whether the
inserted object integrates cohesively with the overall im-
age, specifically examining if it aligns with the lighting and



Figure 1. Comparing results of our framework on real-world and synthetic datasets.

Datasets Real Synthetic In. Out. Size A. R. M. N. D. S. L.

ADE [33] ✓ ✓ ✓ 8k ✓ ✓ ✓ ✓ ✓ ✓ StyleLight [25]
PanoContext [32] ✓ ✓ 0.7k ✓ ✓ ✓ ✓ ✓ ✓

Stanford 2D-3D-S [1] ✓ ✓ 0.3k ✓ ✓ ✓ ✓ ✓ ✓
Bridge Data v2 [24] ✓ ✓ ✓ 2k ✓ ✓ ✓ ✓ ✓

OpenDV-YouTube [26] ✓ ✓ 8k ✓ ✓ ✓ ✓ ✓
InteriorVerse [34] ✓ ✓ 48k ✓ ✓ ✓ ✓ ✓ ✓

GTA-V [21] ✓ ✓ 3k ✓ ✓ ✓ ✓ ✓
Poly Haven [11] ✓ ✓ 1k ✓ ✓ ✓ ✓ ✓ ✓
GObjaverse [18] ✓ single object 21k ✓ ✓ ✓ ✓

Our Captures ✓ ✓ ✓ 4k ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Datasets overview. ’A.’, ’R.’, ’M.’, ’N.’, ’D.’, ’S.’, ’L.’ represent albedo, roughness, metallicity, normal, depth, semantic segmen-
tation, and lighting. ”In.” and ”Out.” denote whether the scene is indoor or outdoor. ”Size” indicates the number of images contained in the
dataset. All intrinsic images for real data are predicted, while all intrinsic images for synthetic data are obtained as ground truth from the
rendering engine. Moreover, We refine the method in [12] on outdoor datasets, enabling it to acquire intrinsic decomposition capabilities
for outdoor scenes.

shadow effects of the background.

4.4. L2 Distance
L2 distance is a metric for measuring the straight-line dis-
tance between two points, commonly used in the field of
image similarity to quantify and compare the differences
between image feature vectors to assess the similarity of
images.

4.5. FID Score
FID (Fréchet Inception Distance) [9] is a metric that quan-
tifies the similarity between real and generated images by
comparing their feature distributions, used to assess the
quality of generative models in image synthesis tasks. We
evaluate image realism using FID and IS metrics on 3k real
images from the ADE validation set and IIW dataset. Each
method generates 3k images from randomly selected un-
trained data in a mixed dataset (see Table 1). Our method

significantly outperforms others in FID metric.

4.6. User Study

We conducted a user study to evaluate the realism of images
produced by various methods, including graphics engines,
Multi-ControlNet, RGB↔X [28], and Ctrl-X [14]. For each
graphics engine, we collected 4 scenes and rendered 8 im-
ages from different viewpoints for each scene. Figure 1 and
Table 2 present the generated results and quantitative met-
rics for 5 of these scene images, naming ’Buildings’, ’Cor-
ner’, ’Street’, ’Kitchen’, and ’Alley’ respectively. We also
expand our user study on 15 real-world and 15 synthetic
embodied AI images, with their intrinsic images obtained
through prediction. Therefore, Our user study involved a
total of 218 image pairs. For each pair, participants were
asked to rate which image appeared most realistic. We gath-
ered 28 valid questionnaires, and the results are presented



Table 2. Quantitative comparison of different methods on synthetic and read-world datasets.”US” is the abbreviation for ”User study”. In
Engine part in 1, the first three reference images are rendered using UE, the fourth with Falcor, and the last two with Blender.

Scene Buildings Corner Street Kitchen Alley Real All

Scores CLIP ↑ LP. ↓ US ↑ CLIP ↑ LP. ↓ US ↑ CLIP ↑ LP. ↓ US ↑ CLIP ↑ LP. ↓ US ↑ CLIP ↑ LP. ↓ US ↑ CLIP ↑ LP. ↓ US ↑ FID ↓

Ours 0.267 0.381 92.9 0.299 0.437 78.6 0.261 0.258 53.6 0.286 0.387 39.3 0.307 0.461 89.3 0.293 0.363 67.9 26.40
Multi. 0.251 0.564 0.00 0.239 0.532 0.00 0.253 0.335 14.3 0.269 0.461 3.57 0.247 0.479 0.00 0.239 0.368 7.14 48.69

RGB↔X [28] 0.233 0.464 3.57 0.270 0.485 21.4 0.240 0.459 7.14 0.281 0.378 21.4 0.282 0.471 0.00 0.280 0.357 25.0 42.90
Ctrl-X [14] 0.252 0.678 0.00 0.250 0.665 0.00 0.226 0.727 0.00 0.270 0.587 0.00 0.265 0.670 0.00 0.247 0.678 0.00 62.63

UE [7] 0.252 - 3.57 0.230 - 0.00 0.251 - 25.0 - - - - - - - - - -
Falcor [2] - - - - - - - - - 0.292 - 35.7 - - - - - - -

Blender [3] - - - - - - - - - - - - 0.245 - 10.7 - - - -
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Figure 2. Comparsion between IntrinsicControlNet and RGB↔X [28]. The second row shows the results using the intrinsic images
provided by the dataset. The third row shows the results of intrinsic images decomposed by the RGB→X process of RGB↔X and then
re-rendered through the X→RGB process. The final row displays the results from our model using the dataset-provided intrinsic images as
conditional input. The last column represents the real data, so both we and RGB↔X use our respective material decomposition methods
to obtain intrinsic images, which were then re-rendered to produce the results.

in Table 2, which shows the percentage of participants who
found images generated by each method to be the most real-
istic. Figure 4 is an example of our user study questionnaire.
The results suggest that images generated by our method
are more likely to be perceived as real photographs. In con-
trast, Multi-ControlNet, due to significant distortions like
color shifts, is perceived as having lower realism. Addition-
ally, the results of RGB↔X [28] seem somewhat specious,
with certain structures not adequately preserving the intrin-
sic features of the images and lacking realism. Moreover,
Ctrl-X [14] often drifts away from capturing the essential
features of images, which makes them appear less authen-
tic. Due to the separation of material and geometry into

two branches for conditional control and the use of a cross-
distribution method, our approach achieves more realistic
and accurate features.

5. More Comparsion

5.1. Comparison with RGB↔X

We evaluate our model and RGB↔X [28] on untrained in-
door and outdoor images, as shown in Figure 2, which in-
clude some ground truth intrinsic images, and we use them
as conditional inputs in both our method and RGB↔X to
generate re-rendered results. These are displayed in the sec-
ond and fourth columns of Figure 2. Our method demon-



Figure 3. The relighting results of our method. By changing different environment maps as lighting condition, our method can quickly
adjust the lighting of the scene to generate realistic relit images.

Figure 4. An example of our user study questionnaire.

strates excellent alignment with the intrinsic image fea-
tures, closely matching the ground truth. This highlights
our method’s robustness to different intrinsic image sources
and its ability to maintain realism. In contrast, the results
of RGB↔X appear chaotic. This may be due to signifi-
cant differences in the numerical distribution of these in-
trinsic images compared to those used during the training
of RGB↔X. To investigate further, we use the RGB→X
process of RGB↔X to regenerate the intrinsic images from
the original RGB images and re-render them using the
X→RGB process. The results are shown in the third col-

umn of Figure 2. Comparing the results of the two RGB↔X
approaches with our results, it is evident that the results of
RGB↔X contain some errors and lack realism, whereas our
results align closely with the ground truth and exhibit a high
degree of realism. Additionally, in Table 2 and Table 1 of
the main text, we used CLIP and LPIPS metrics to quan-
titatively compare the results obtained by our method and
RGB↔X. The table shows that our method achieves higher
CLIP scores and lower LPIPS values across different scene
images compared to RGB↔X. This indicates that our re-
sults are more photorealistic and have a lower discrepancy



Table 3. Quantitative comparison of different methods and different intrinsic images. ’LP.’ is the abbreviation for LPIPS.

Intrinsic All A. M.+R. A.+N.+D.+S.

Scores CLIP ↑ DINO↑ LP. ↓ L2 ↓ CLIP ↑ DINO↑ LP. ↓ L2 ↓ CLIP ↑ DINO↑ LP. ↓ L2 ↓ CLIP ↑ DINO↑ LP. ↓ L2 ↓

GT 0.2733 - - - - - - - - - - - - - - -
Ours 0.3137 0.9772 0.2569 128.1 0.3011 0.9763 0.2576 136.7 0.3048 0.9670 0.3162 148.6 0.3088 0.9771 0.2590 133.3

Multi. 0.2891 0.9531 0.2910 151.5 0.2984 0.9284 0.5153 185.0 0.2960 0.9603 0.3369 180.5 0.3037 0.9766 0.2621 149.2

from the ground truth.

5.2. Comparison with Multi-ControlNet
We compare our method with the Multi-ControlNet ap-
proach. To ensure a fair comparison, we train a separate
ControlNet [29] for each intrinsic image type on our entire
mixed dataset. Then, We separately use our model and the
Multi-ControlNet approach to generate images with various
combinations of condition inputs. The comparison results
are shown in Figure 11 and Table 3. The L2 metric from
Meng et al. [16] quantifies faithfulness by calculating the
L2 distance over all pixels between the guide and output,
normalized to [0,1]. Additionally, we can observe that using
certain subsets of intrinsic images produces similar results,
a discussion that we will delve into in Section 8.

Table 2 and Table 3 present a quantitative comparison
of our method with Multi-ControlNet using CLIP, LPIPS,
DINOv2 similarity distance, and L2 distance metrics. Our
results achieve higher CLIP scores and DINOv2 similarity,
lower LPIPS and L2 values. This indicates that our method
achieves better alignment with the ground truth compared
to Multi-ControlNet when using combinations of different
intrinsic images as inputs.

5.3. Comparison with Graphics Engines
As mentioned in Section 1 and Section 4, we compared our
method to several popular graphics engines using the CLIP
score. Since the calculation of the CLIP score depends on
the provided text prompt, we test a wider variety of prompts
here to provide more comprehensive quantitative compari-
son results. As shown in the Table 4, when we used ’en-
gine rendering style’ as the text prompt, the results gen-
erated by various graphics engines achieved higher CLIP
scores. Conversely, when we used ’photorealism’ as the
text prompt, our results achieved better scores.

5.4. Comparison with Relighting and Editing Meth-
ods

Our work focuses on RGB synthesis from intrinsics (more
akin to RGB↔X, Ctrl-X, and concurrent PRISM [6] (not
open-source yet)). Notably, these approaches do not com-
pare the additional baselines (Neural Gaffer [10], IC-
Light [30], and DiLightNet [27]) because of scope and
application differences: light-only control vs. intrinsic

Figure 5. Ablation study on image encoder and 0-SNR strategy.

controls. However, since our method is fully capable
of performing relighting tasks, we conducted additional
experiments focused specifically on relighting and other
instruction-guided editing tasks, with the results presented
in the accompanying Figure 6 and Table 5. While the goal
of intrinsic control is controllable and photo-realistic gen-
eration aligned with input intrinsic, IC-Light, DiLightNet,
and Neural Gaffer fail in scene-level application, e.g., with
missing shadows and geometry/material errors. For scene
editing and image-prompt generation, our design of intrin-
sic control offers precision while MagicBrush/MGIE/IP-
Adapter/OminiControl falter. This demonstrates our supe-
rior intrinsic-guided control and cross-distribution realism
over the additional baselines.

6. Ablation Study

Effect of cross-distribution training data. To evaluate the
impact of cross-distribution training data on the generated
results, we trained our framework separately on synthetic
data and real data and show the results in Figure 6 in the
main text. As shown in the third column of Figure 6 in
the main text, the model trained without real data tends
to produce overall darker images. While the geometry is
maintained, the results look highly unrealistic, with harsh
highlights and a noticeable loss of realism compared to our
method. In contrast, when training solely on real data, the
model generates more realistic images, but many geomet-
ric details in the scene are either incorrect or blurred. For
instance, in the first row of the fourth column in the im-



Building(UE5) Kitchen&Park(Falcor) Alley(blender)

Prompt a ↑ a+b ↑ a+c ↓ a ↑ a+b ↑ a+c ↓ a ↑ a+b ↑ a+c ↓

Reference 0.2629 0.2529 0.2798 0.2651 0.2630 0.2850 0.2508 0.2801 0.2747

Ours 0.2773 0.2703 0.2717 0.2836 0.2822 0.2779 0.2997 0.3036 0.2611

Table 4. Comparison of the results of our method and different graphic engines.
a: BLIP prompt; b: “photorealism”; c:“engine rendering style”.

Figure 6. More comparison results with relighting and editing methods.

age, the person at the end of the corridor is missing in the
model trained solely on the real dataset. Additionally, the
results obtained from this ablation method generally exhibit
a warmer color tone. Only our approach enables the gener-
ated images to achieve high realism while preserving pre-
cise, controllable geometry.

Effect of the separate design of material and geometry.
In the previous section, we explained the necessity of us-
ing a mixed dataset of real and synthetic data. However,
simply expanding the dataset is not sufficient, as it can lead
to results with geometric color confusion. For example, in
the first row of the fifth column, the person’s clothing has
been transformed into grass. In the second row, there are
prominent color bleeding errors affecting the items on the

kitchen countertop and the window. To address the cross-
distribution training challenge, we divided the input intrin-
sic images into two groups and used two separate branches
to manage each group. To validate the effectiveness of this
design, we train a model on the same dataset as ours but
with a single branch. In this model, all intrinsic images pass
through the same ControlNet to control the latent diffusion
model. By separating the geometry and material branches,
the results, as shown in the second column of Figure 6 in
the main text, are better aligned with the intrinsic image
features.

Effect of lighting control. We compared the results of in-
corporating lighting as a conditional input versus omitting
it, as depicted in the last column of Figure 6 in the main



Applications Relighting Scene editing Image-prompt All

Methods Neural Gaffer IC-Light DiLightNet MagicBrush MGIE IP-Adapter OmniControl Ours

CLIP ↑ 0.254 0.271 0.244 0.281 0.250 0.272 0.284 0.298
SSIM ↑ 0.136 0.332 0.064 - - 0.277 0.310 0.665

Table 5. More quantitative comparison with relighting and editing methods.

Figure 7. Impact of different intrinsic images, including albedo (A.), roughness (R.), metallicity (M.), normal (N.), depth (D.), and semantic
segmentation (S.). ’All’ indicates the results generated using all intrinsic images as conditions, including lighting. ’w/o X’ represents the
results obtained using all intrinsic images as conditions except for X. ’Geometry’ means all the geometry intrinsic images, including
normal, depth, and semantic segmentation.

text. Without lighting conditions, the generated images dis-
play random lighting effects, as seen with the reflections
on the floor in the first row of the last column of Figure 6
in the main text. In enclosed indoor spaces with windows,
shown in the second row of the last column, we noticed that
without lighting input, the windows appear black or gray,
causing the room to be generally dim. However, when light-
ing is included, the windows allow light to enter, brighten-
ing the room. This demonstrates that our lighting condition
plays a crucial role, enabling the generated results to more
accurately reflect the lighting information of the provided
environment map.

Additionally, we provided more generated results after
changing the panoramic environment maps, as shown in
Figure 3. It is evident that the lighting from different en-
vironment maps is reflected in the resulting images. For ex-
ample, in the first two rows with ’Output 2’, the middle sec-
tion of the result images is clearly illuminated with red light,
while the sides display some blue light. This demonstrates
that our lighting control effectively influences the images,

making it a useful tool for altering the overall lighting of
scene images.

Image encoder. We compare the generated results obtained
with and without using the condition image encoder men-
tioned in Section 3.2 in the main text and show the results
in Figure 5. With the original image encoder from Con-
trolNet [29], there are clear geometric and material inaccu-
racies compared to the ground truth, as shown in the third
column. However, our results in the second column pre-
serve the local geometry present in the ground truth. The
experiment shows that our improved image encoder has a
clear advantage in extracting fine geometry from intrinsic
images, allowing our network to learn more precise control
over the details in various images.

Zero terminal SNR strategy. As shown in Figure 5, the
results without using zero SNR strategy in the last column
have a significant color discrepancy compared to the ground
truth in the first column, appearing overall darker and red-
der, whereas the results using the zero terminal SNR strat-
egy (Ours) show almost no color deviation. The zero termi-



Table 6. Quantitative comparison of object insertion and scene editing tasks in different methods.

Application Object insertion Scene editing

Methods RGB addition Ours AnyDoor Ours InstructPix2Pix

CLIP ↑ 0.282 0.296 0.289 0.299 0.282
DINOv2-selfsim ↑ 0.6716 0.6748 0.6683 - -

DINOv2-sim ↑ - - - 0.9794 0.9031

nal SNR strategy ensures consistency in the diffusion pro-
cess between training and inference by fully adding noise
during training. This closely matches the initial step of the
inference process, resulting in generated images that align
with the original data distribution.

7. Quantitative Results of Object Injection and
Scene Editing

In applications focused on object insertion and scene edit-
ing, we conducted a quantitative comparison of our results
against those produced by direct RGB insertion and edit-
ing, RGB↔X [28], AnyDoor [5], and InstructPix2Pix [4],
as shown in Table 6. Notably, in the object insertion ap-
plication, we utilize only albedo and normal as conditional
inputs to minimize interference from other unchanged con-
ditions. Similarly, in the scene editing section, we employ
only albedo and the edited intrinsic image as conditional
inputs. Figure 7 and Figure 9 in the main text and Ta-
ble 6 show that our method demonstrates a more precise
alignment with the changes in the conditional images and
achieves higher CLIP scores and DINOv2 similarity on both
object insertion and scene editing applications.

Specifically, we use the DINOv2 self-similarity distance
instead of DINOv2 similarity distance to measure the qual-
ity of the generated results for object insertion. Because the
background image and the inserted object originate from
two different images. Simply inserting the object at the
RGB level can result in significant discrepancies, includ-
ing differences in tone, highlights, and shadows. The self-
similarity distance helps evaluate whether the result of the
object insertion appears as a cohesive image, specifically
whether the inserted object aligns with the lighting and
shadow effects of the background. As shown in Table 6,
compared to direct insertion at the RGB image level and
AnyDoor [5], our approach achieves higher image self-
similarity values. This indicates that our method allows
the inserted object to blend more seamlessly with the back-
ground features.

8. Discussion on the Impact of Different Intrin-
sic Images

During the experiment, we found that different combina-
tions of intrinsic images as conditional inputs might result
in similar generated images. This inspired us to explore

which conditions play a decisive role in the generation re-
sults and which conditions are relatively redundant in the
generation process. Figure 6 in the main text and Figure 3
has demonstrated that the environment map influences the
final result as a lighting condition. Therefore, we will now
examine how the other six intrinsic images (albedo, normal,
depth, metallicity, roughness, and semantic segmentation)
affect the generated outcome with the same lighting. The
first row in Figure 7 illustrates that albedo is a crucial con-
ditional input for preserving the overall perception of the
reference image. Without using albedo as a condition, the
colors in the generated image would appear random.

The second row of Figure 7 shows the results generated
by our model in the absence of metallicity or roughness
conditions. The results indicate that for some metallic and
smooth materials, including metallicity helps maintain bet-
ter alignment with the reference image compared to when
metallicity is not included. For instance, the black sec-
tion above the stovetop is rendered as silver in the absence
of metallicity. This demonstrates that both metallicity and
roughness influence the generated results, but roughness is
somewhat redundant compared to metallicity.

The third row of Figure 7 presents the results generated
by our model in the absence of normal, depth, or seman-
tic segmentation as conditional inputs. As shown in Figure
7, incorporating one or more geometric intrinsic images as
conditions, especially normal, can improve the geometric
accuracy of the generated results compared to using only
albedo. For instance, when normals are included, the edges
and indentations at the base of the toilet are rendered more
clearly compared to when normals are not included. There-
fore, by adding geometric intrinsic images, these geometric
inaccuracies are appropriately corrected.

9. More Details of Network Architecture

9.1. Structure and Components

We show the details of training and inference network archi-
tecture in the Figure 9 and Figure 10 respectively. We ap-
ply cross-feature injection in both branches during training
process, as shown in Figure 9. Specifically, at each train-
ing step t, geometry features fS

g from the geometry branch
are injected into the material branch when the input data is
synthetic, while material features fT

m are injected into the
geometry branch when the input data real-world data, both
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Figure 8. Comparison of the convergence between ControlNet [29] and our framework, where ControlNet uses a single branch to control
both material and geometry generation.

at the l-th layer of the latent diffusion model. At each infer-
ence time step t, we only use the material branch for image
generation with geometry feature injection at the l layer, as
shown in Figure 10.

The realistic discriminator is a neural network model de-
signed for distinguishing between target and generated im-
ages while also classifying the images into different dis-
tributions. It consists of a series of shared convolutional
layers followed by two separate heads for multitask learn-
ing. The shared layers begin with a 2D convolutional layer
that takes a 4-channel input and applies a 64-filter convo-
lution with a kernel size of 4, a stride of 2, and a padding
of 1, followed by a LeakyReLU activation function. This
is followed by another convolutional layer with 128 filters,
batch normalization, and LeakyReLU activation. The pat-
tern continues with 256 and 512 filters in subsequent lay-
ers, each followed by batch normalization and LeakyReLU.
After flattening the output, the network branches into two
heads. The target/generated head consists of a single linear
layer that outputs a single value, indicating whether the in-
put image is target or generated. The distribution classifica-
tion head also consists of a single linear layer, but it outputs
a vector with a length equal to the number of distributions,
providing a classification score for each distribution. This
architecture allows the discriminator to perform both tar-
get/generated discrimination and distribution classification
simultaneously. This approach ensures that the geometry
in the image generated by the material branch aligns with
the geometry predicted by the geometry branch while also
preserving the realistic features of the material branch.

9.2. Design Rationale
Rationale for real data lighting pair generation. Our
approach in Sec 3.3 of the main text is a compromise on
the scarcity of matched real-world RGB image with cor-
responding HDR map. Our design of decoupling geom-
etry and material control allows us to effectively harness
the photo-realism inherent in real-world data and the con-

trollable accuracy of synthetic data. The extensive syn-
thetic data in the training process provides precise pairwise
data consisting of RGB images and HDR maps, which ef-
fectively eliminates negative impact from the inaccuracies
found in real-world data, as confirmed by Fig 6 in the main
text.
Effect of GAN loss. We aim to generate photo-realistic im-
ages from synthetic intrinsics. The lack of paired synthetic
and real data prevents explicit definition of the two differing
image distributions, motivating us to achieve robust cross-
distribution generation. In contrast to existing diffusion-
based relighting methods, which use paired data and explicit
targets in training to simplify learning distributional trans-
formations, we employ GAN loss to implicitly disentangle
the distributions between real-world and synthetic images
adversarially. This allows our model’s two branches to cap-
ture distinct features of each distribution and successfully
bridge this gap, facilitating effective cross-distribution gen-
eration from unpaired sources.

10. Convergence Speed of Geometry and Ma-
terial

Figure 8 shows the intermediate results during the train-
ing process for both ControlNet [29] and our model. We
attempt to use a single branch to control both the geome-
try and material of the generated images using ControlNet.
During the training process of ControlNet, we can observe
that the convergence speeds of material and geometry dif-
fer. As shown in Figure 8, the geometry tends to converge
much faster than material. At an early training stage, the
geometric features of the generated results are already glob-
ally well-controlled, but the color and style are still not pre-
cisely managed, with noticeable color errors in the details.
As the training progresses, the geometry continues to re-
fine locally, but the slow convergence of material causes the
color and style to lag behind the ground truth. Since geo-
metric control has been achieved, the network as a whole



tends to stabilize. This results in the final generated images
having issues like being too dark or too magenta. To avoid
this issue, we separated the material and geometry features
by using two ControlNet branches with non-shared param-
eters as mentioned in Section 3.4 in the main text, which
prevents interference between the optimization of material
and geometry.

11. Visualization of Entire Intrinsic Images
We show the entire intrinsic image input achieved from real-
world photos in Figure 13, and compare the generated im-
ages of our methods with the original photos in 1.

12. Limitation and Failed Cases
Our model is capable of generating RGB images with the
desired features from intrinsic images in most cases, but it
does exhibit some limitations and failure cases. For real-
world images, where accurate intrinsic images are not avail-
able, we generate them using the method outlined in Intrin-
sicImageDiffusion [12]. If the normal or depth maps pro-
duced by this method lose geometric information, as illus-
trated in the first two rows of Figure 12, our results may
have overall colors similar to the ground truth but display
disorganized local geometry. Fortunately, this component
can be updated and replaced with a more advanced model
to produce more accurate intrinsic images. Additionally, the
last two rows of Figure 12 demonstrate that when adjacent
colors in the albedo map are very similar, our model strug-
gles to distinguish between them, resulting in the generated
output being rendered as a single color.



Figure 9. Details of feature injection in our training network architecture. The dashed line represents synthetic data streams, and the solid
line represents real data streams. When synthetic data is used as input, it is processed through the ControlNet of both the geometry and
material branches. Material branch features are injected into the geometry branch, and the prediction is derived from the geometry branch
to compute the loss with Gaussian noise. For real data, the process is similar, but geometry branch features are injected into the material
branch, and the prediction is derived from the material branch. Lighting information is concatenated into the conditions of both branches,
controlling both branches along with the other conditions. During training, losses from both branches are combined for joint optimization.



Figure 10. Details of our inference network architecture. During inference, regardless of whether the input data is synthetic or real,
the geometric conditions are processed through the geometry branch’s ControlNet, and the material conditions are processed through the
material branch’s ControlNet. Lighting information is concatenated into the conditions of both branches, controlling both branches along
with the other conditions. The features from the geometry branch are injected into the material branch, which then generates the final
output image.



Figure 11. Results of different combination of intrinsic conditions between IntrinsicControlNet and Multi-ControlNet.

Figure 12. Some failure cases of our framework.
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Figure 13. Our framework uses predicted multiple intrinsic images to generate realistic images that resemble the original. Here we show
all intrinsic images with the results.
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