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1. The Details of Method001

The Details of 4D Vitual Camera. The virtual 4D camera002
is proposed to render face video. The 4D virtual cameras003
use fixed virtual camera intrinsic parameters E and extrin-004
sic parameters K to render the face video instead of using005
real camera parameters. The camera intrinsic parameters E006
use the face center as the focal point use half the size of the007
face as the focal length, and use an identity matrix for the008
extrinsic parameters K. The virtual 4D camera initializa-009
tion is shown in the Tab. 1. Based on such initialization, the010
virtual 4D camera will predict the 4D Gaussian Map pre-011
diction into video.012

Algorithm 1 Virtual 4D Camera Configuration

1: Input: Time length T , Spatial dimensions H ×W
2: Output: Camera parameters E, K, projection matrices
3: procedure INITIALIZECAMERA
4: fx ← T/2 ▷ Temporal focal length
5: fy ← (H ·W )/2 ▷ Spatial focal length
6: FovX← 2 arctan(T/(2fx)) ▷ Field-of-view in

time
7: FovY← 2 arctan((H ·W )/(2fy)) ▷

Field-of-view in space

8: E←

fx 0 fx
0 fy fy
0 0 1

 ▷ Intrinsic matrix

9: K← I4 ▷ Extrinsic matrix (identity)
10: Mproj ← getProjectionMatrix(FovX,FovY) ▷

3D-to-2D projection
11: Mview ← getWorld2View(I3,0) ▷

World-to-camera transform
12: end procedure

The Details of Gaussian Adapter. Our framework em-013
ploys a learnable 4D Gaussian adapter Gθ to predict dy-014
namic neural primitives that encode facial geometry, ap-015
pearance, and motion. Gaussian adapter establishes a differ-016

entiable mapping between raw video sequences and struc- 017
tured 4D Gaussian maps Mgs ∈ R22×N×T , where N de- 018
notes spatial resolution and T temporal duration. Each 019
Gaussian primitive contains 22 parameters organized into 020
three functional groups: 021

1. Appearance Attributes. 022
- dr ∈ R1: Radial depth from camera plane 023
- vs ∈ R3: Specular reflection coefficients (Fresnel 024

term) 025
- vd ∈ R3: Diffuse albedo (Lambertian component) 026
- vn ∈ R3: Motion-induced noise residuals 027
The final perceived color combines these components 028

through: 029

c = vs︸︷︷︸
Specular

+ vd︸︷︷︸
Phisological Signals

+ vn︸︷︷︸
Motion Noise

030

2. Geometric Properties. - a ∈ R1: Alpha transparency 031
(density modulation) 032

- s ∈ R3: Anisotropic scaling factors 033
- r ∈ R4: Rotation quaternion (3D orientation) 034
3. Motion Dynamics. 035
- [∆h,∆w,∆s] ∈ R5: Spatiotemporal displacement 036

field 037
- ∆h,∆w: Spatial translation in image plane 038
- ∆s: Scale evolution over time 039
4. Differentiable Rendering Formulation. The 3D po- 040

sition p ∈ R3 of each Gaussian primitive is computed 041
through perspective projection: 042

p = KE


u · d
v · d
d
1

 , 043

where


(u, v) ∈ [0, 1]2 : UV coordinates
d = dr : Depth
K,E : Camera matrices

044
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This formulation ensures depth-aware preservation of facial045
topology during projection.046

5. Activation Constraints.047
Following [3], we employ specialized activation func-048

tions:049
Frgb(c) = Sigmoid(c) (Color)
Fα(a) = Softplus(a) (Opacity)

Fscale(s) = eζ(s−1) (Scale)
Frot(r) = normalize(r) (Rotation)

050

where ζ denotes a learnable curvature parameter. These051
constraints guarantee physically plausible gradient propa-052
gation during optimization.053

6. Temporal Coherence The motion flow parameters054
[∆h,∆w,∆s] enable explicit modeling of facial dynamics055
through:056

pt = pt−1 + J−1[∆h,∆w,∆s]⊤057

where J represents the Jacobian of previous frame’s pro-058
jection. This differential formulation ensures temporal059
smoothness while accommodating non-rigid deformations.060

Method Training Time (h) Model (ms) MAE
DeepPhy [1] 40 400 11.0
NEST-rPPG [2] 8 8 4.76
PhysioGaussian 14 8 4.22

Table 1. Summary of Methods with Training Time, Model Infer-
ence Time, and MAE on VIPL dataset.

2. The Details of Experiment061

Training and inference efficiency. We conducted a train-062
ing evaluations using the VIPL dataset, focusing on the063
training time, inference time, and performance of three064
methodologies: DeepPhy, NEST-rPPG, and PhysioGaus-065
sian. The comparison of the methodologies is summarized066
in Table 1, which presents key metrics for each method, in-067
cluding their training times, inference times, and Mean Ab-068
solute Errors (MAE).069

From the data presented in Table 1, it is evident that070
DeepPhy requires significantly more training time (40071
hours) and exhibits a high inference time of 400 ms, re-072
sulting in a Mean Absolute Error (MAE) of 11.0. DeepPhy,073
which employs a video-based approach, displayed subop-074
timal performance in both training duration and inference075
efficiency. This inefficiency underscores the limitations of076
video-based methods in real-time applications. In contrast,077
both NEST-rPPG and PhysioGaussian demonstrated supe-078
rior efficiency and effectiveness, leading to our decision079
to select STMap as the network input. Notably, Physio-080
Gaussian simplifies the inference process by omitting the081
4D Gaussian Adapter, resulting in a network structure that082

aligns perfectly with that of NEST-rPPG. However, it is im- 083
portant to highlight that PhysioGaussian requires simultane- 084
ous reconstruction during the training phase, consequently 085
extending its training duration compared to NEST-rPPG. 086
Nonetheless, given the relatively lightweight nature of the 087
tasks involved, this additional training time is often deemed 088
negligible in practical applications. 089

Figure 1. Effect of λrec, λst, and λm on VIPL-HR.

Effect of λrec, λst, and λm. Ablation studies on three bal- 090
ancing parameters (λrec, λst, and λm) reveal distinct func- 091
tional roles (Fig. 1). The reconstruction constraint λrec 092
shows minimal RMSE fluctuation (±0.2bpm), indicating 093
limited influence of specular component (Vs) decoupling. 094
In contrast, spatiotemporal consistency weight λst and mo- 095
tion noise constraint λm demonstrate critical importance - 096
optimal performance emerges at λst = 0.2 and λm = 0.01. 097
The λst enforces physiological continuity through Vd’s spa- 098
tiotemporal coherence, while λm isolates motion artifacts 099
in Vn. Their synergy directly enhances rPPG signal quality 100
with significantly better performance than λrec, confirming 101
the dominance of diffuse chroma/noise decoupling in BVP 102
recovery. 103
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