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Serialization based Point Cloud Oversegmentation

Supplementary Material

A. Implementation details001

In this section, we provide more implementation details of002
the experiments. Our implementation primarily refers to003
the Pointcept codebase [1]. The train settings are shown in004
Tab. 1. The model settings are presented in Tab. 2. The005
data augmentations shown in Tab. 3 are the same as those in006
PTv3 [2].007

A.1. A.Implementation details008

In this section, we provide more implementation details of009
the experiments.010

A.1.1. Model Configuration011

We employ a consistent architecture across all experiments012
with minimal dataset-specific adjustments. Our model uti-013
lizes a modified sparse U-Net backbone featuring five-014
stage symmetric encoder-decoder structure, each with a sin-015
gle block depth. The network’s embedding dimensions016
progress through [32, 64, 128, 256] in the encoder and017
[128, 64, 64] in the decoder, with Mamba blocks incor-018
porating conditional positional encoding at the 256 dimen-019
sional stages. For hierarchical point cloud processing, we020
implement a three-level hierarchy using Hilbert curves, or-021
ganizing points into n, 1024, 256 segments (where n repre-022
sents the original point count). The superpoint feature up-023
date module maintains a 64-dimensional feature space and024
iterates three times, matching the raw point embedding di-025
mension. The superpoint graph interaction component com-026
prises four consecutive layers, utilizing a k-NN graph struc-027
ture with k=6 in feature space for the Graph Transformer028
and k=3 in Euclidean space for the GCN operations. Train-029
ing is performed on two NVIDIA RTX 4090 GPUs using030
Adam optimizer with early stopping when validation recall031
stagnates for 20 epochs, and the final results are reported as032
the average across all epochs.033

B. Supplemental Explanation034

B.1. Hilbert Curve Mapping035

Time Complexity. Our Hilbert curve mapping follows the036
implementation of PTv3 [2], and its time complexity can be037
divided into several parts. First, the Coordinate Quantiza-038
tion process discretizes each 3D point into a grid of resolu-039
tion 2m×2m×2m, where m is the bit-depth. This requires040
O(1) operations per point, as quantization involves fixed-041
bit truncation. Second, the Hilbert Value Generation maps042
from 3D coordinates to 1D Hilbert indices through iterative043
bit-level permutations. For m bits, each point undergoes044

Indoor Outdoor

Config Value Config Value

optimizer AdamW optimizer AdamW
scheduler Cosine scheduler Cosine
criteria CrossEntropy(1) criteria CrossEntropy(1)

Lovasz(1) Lovasz(1)
learning rate 1e-3 learning rate 8e-4
block lr scaler 0.1 block lr scaler 0.1
weight decay 5e-2 weight decay 5e-2
batch size 8 batch size 8
datasets ScanNet / datasets NuScenes /

S3DIS Sem.KITTI
warmup epochs 40 warmup epochs 2
epochs 800 epochs 50

Table 1. The train settings of indoor and outdoor scenes.

SpConv setting Value

embedding channels 64
encoder depth [1, 1, 1, 1]
encoder channels [32, 64, 128, 256]
decoder depth [1, 1, 1]
decoder channels [64, 64, 128]
down stride [2, 2, 2]

Mamba setting Value

serialization order Hilbert order
embedding layers 4th

hidden state 8
expand 1
drop path 0.1

Superpoint setting Value

granularity [1024, 256]
initial method averge pooling
number of nei. expansion 2
similarity metric cosine similarity
superpoint dimension 64
number of iterations(level 1) 3
number of iterations(level 2) 3

loss setting Value

predefined separation margin δdist 0.5
loss weights δ 1

Table 2. The model settings.

O(m) bitwise operations (e.g. XOR, shifts) across three di- 045
mensions. The total cost for n points is Θ(n × m). In 046
practical implementations, m is bounded (e.g. m = 16), re- 047
ducing this term to O(n). Combining quantization, Hilbert 048

1



ICCV
#8408

ICCV
#8408

ICCV 2025 Submission #8408. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Augmentations Parameters Indoor Outdoor

random dropout dropout ratio: 0.2, p: 0.2 ✓ -
random rotate axis: z, angle: [-1, 1], p: 0.5 ✓ ✓

axis: x, angle: [-1 / 64, 1 / 64], p: 0.5 ✓ -
axis: y, angle: [-1 / 64, 1 / 64], p: 0.5 ✓ -

random scale scale: [0.9, 1.1] ✓ ✓
random flip p: 0.5 ✓ ✓
random jitter sigma: 0.005, clip: 0.02 ✓ ✓
elastic distort params: [[0.2, 0.4], [0.8, 1.6]] ✓ -
auto contrast p: 0.2 ✓ -
color jitter std: 0.05; p: 0.95 ✓ -
grid sampling grid size: 0.02 (indoor), 0.05 (outdoor) ✓ ✓
sphere crop ratio: 0.8, max points: 128000 ✓ -
normalize color p: 1 ✓ -

Table 3. The data augmentations.

Algorithm 1 Hierarchical Quaternary Partitioning on Seri-
alized Point Cloud
Require: Input point cloud P ∈ RN×3, total levels K
Ensure: K-level hierarchical structureH

1: function BuildHierarchy(P)
2: Pseq ← H(P) {Hilbert curve serialization}
3: Ppad ← ϕ(Pseq, 4

K) {Pad to nearest multiple of 4K}
4: return QuaternaryPartition(Ppad, 0, Npad, 1, K)
5: end function
6: function QuaternaryPartition(Ppad, start, end, k, K)
7: Sk

i ← {Ppad[j] | j ∈ [start, end)}
8: if k = K then
9: return Sk

i

10: end if
11: step← (end− start)/4
12: mid1 ← start+ step
13: mid2 ← start+ 2× step
14: mid3 ← start+ 3× step
15: Sk+1

4i ←QuaternaryPartition(Ppad, start, mid1, k+1,
K)

16: Sk+1
4i+1 ←QuaternaryPartition(Ppad, mid1, mid2, k+1,

K)
17: Sk+1

4i+2 ←QuaternaryPartition(Ppad, mid2, mid3, k+1,
K)

18: Sk+1
4i+3 ← QuaternaryPartition(Ppad, mid3, end, k + 1,

K)
19: Iki ← {4i, 4i + 1, 4i + 2, 4i + 3} {Store quad-child

indices}
20: return Sk

i ∪ {S
k+1
4i , Sk+1

4i+1, S
k+1
4i+2, S

k+1
4i+3}

21: end function =0

mapping, and sorting:049

T (n) = O(n) +O(n) = O(n). (1)050

B.2. Hierarchical Segment Initialization051

The hierarchical partitioning algorithm for serialized point052
clouds is detailed in Algorithm 1.053

C. Additional Ablation Studies 054

Since our oversegmentation network can be combined with 055
a semantic segmentation head to form an end-to-end archi- 056
tecture, we directly optimize a joint loss function as shown 057
in Eq. (2): 058

ℓjoint = δℓsp + ℓsem (2) 059

where ℓsp represents the local discriminative loss for train- 060
ing superpoints, and ℓsem is the cross-entropy loss for se- 061
mantic segmentation. The parameter δ serves as the weight- 062
ing factor that controls the influence of the superpoint ag- 063
gregation loss. 064

The superpoint loss ℓsp consists of three components as 065
formulated in Eq. (3): 066

ℓsp =
1

Ns

Ns∑
i=1

∑
p∈Si
∥fi − f ′

Sk
i
∥2

|Si|
+

1
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∑
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max(0, δdist − ∥f ′
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i
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Sk
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i=1

K∑
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pi,k log(pi,k)

(3) 067

To investigate the impact of the superpoint loss weight- 068
ing, we conducted experiments with various δ values. 069
Fig. 1 presents the Boundary Precision (BP) metric across 070
training epochs for different weight configurations. The re- 071
sults demonstrate that as δ increases from 0 to 1.0, the BP 072
metric maintains relatively high values, with weights of 0.4, 073
0.5, and 1.0 achieving the best performance (consistently 074
around 30%). 075

Conversely, when δ gradually decreases, particularly 076
when it approaches or equals zero, we observe a dramatic 077
decline in BP performance, dropping to approximately 20% 078
by the end of training. This trend clearly validates the effec- 079
tiveness of our proposed superpoint aggregation loss formu- 080
lated in Eq. (3). The higher weights (0.4-1.0) show stable 081
performance across training epochs, while lower weights 082
(0-0.1) exhibit significant degradation over time. 083

Notably, a weight of 0.2 maintains a reasonable com- 084
promise between stability and performance. These findings 085
suggest that proper balancing of the superpoint loss com- 086
ponent is crucial for preserving boundary precision in our 087
joint learning framework. 088

D. Additional visualization 089

We further visualized additional superpoints generated 090
by SPCNet and the prediction results on ScanNet and 091
Sem.KITTI, as shown in Fig. 2. 092
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Figure 1. Boundary Precision (BP) values over training epochs for
different superpoint loss weights (δ) on the ScanNet.

E. Limitations093

Sensitivity to Serialization Patterns: Our voxel serializa-094
tion relies on 3D Hilbert curves to preserve spatial locality.095
While effective for regular indoor scenes, this approach may096
struggle with complex outdoor geometries (e.g. overpasses,097
multi-level vegetation) where Hilbert ordering could disrupt098
natural spatial adjacency. The partitioning granularity fol-099
lowing a geometric progression Mk = 2m−2k+2 also limits100
adaptation to scenes with extreme scale variations. Future101
work could explore adaptive curve selection and dynamic102
granularity adjustment based on local geometric complex-103
ity.104

Task-Specific Feature Coupling: The end-to-end frame-105
work jointly optimizes superpoint generation and seman-106
tic segmentation, potentially causing overfitting to segmen-107
tation objectives at the expense of generalizable super-108
point properties. While our ablation studies validate super-109
point quality, the lack of dedicated oversegmentation bench-110
marks necessitates caution—superpoints optimized for one111
semantic segmentation dataset may not transfer optimally112
to other tasks like instance segmentation, where instance113
segmentation datasets would be needed to optimize super-114
points, and superpoint boundaries would then conform to115
instance object boundaries. Decoupled training protocols116
or multi-task losses could mitigate this limitation.117

F. Future Work118

While the current superpoint refinement method efficiently119
uses hard assignments based on similarity matching, it120
risks propagating early errors through misassigned hetero-121
geneous regions. To mitigate this, our framework could in-122
tegrate two complementary improvements: First, adaptive123
region-growing along the serialized curve could dynami-124
cally merge clusters by expanding from high-confidence125
seeds until encountering feature divergence thresholds, pre-126
serving spatial coherence. Second, semantic-consistency127

correction could reassign outlier points by leveraging the 128
observed class dominance within superpoints, statistically 129
reallocating minority-class points to adjacent segments with 130
compatible profiles while respecting hierarchical adjacency 131
constraints. These strategies synergistically balance bound- 132
ary awareness with topological consistency. 133
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Figure 2. The visualization of superpoints generated on the ScanNet and Sem.KITTI.
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