TACO: Taming Diffusion for in-the-wild Video Amodal Completion

Supplementary Material

We provide details on data curation, implementation, addi-
tional qualitative results, and a discussion of limitations in
supplementary materials.

A. Data Curation Details

In this section, we elaborate on the details of how we curate
the Object-video-Overlay (OvO) dataset, including how to
overlay occluders consistently throughout the video in Ap-
pendix A.l, how we apply image transformation techniques
to augment our dataset with image-level datasets in Ap-
pendix A.2, and other curation details in Appendix A.3.

A.1. Overlay Occluders Consistently

To ensure consistent occlusions, it is crucial to maintain
continuous change in the occluders’ properties across video
frames. This includes the occluders’ position, p, which
specifies their position, and scale, s, which determines their
size. We employ two heuristic strategies in OvO-Easy and
OvO-Hard dataset to generate occlusions.

OvO-Easy Occluders are selected from Objaverse [4, 5]
and SA-1B [10]. Appropriate occlusion positions are identi-
fied for the first and last frames of the video. The occlusion
rate, defined as the ratio of the occluded area to the total
area of the object, is constrained to lie between 0.3 and 0.7
in both the first and last frames. For the intermediate frame
1 , the occlusion position p; and scale s; are determined
through linear interpolation, ensuring smooth transitions:
) )
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where Pg, Sst; Ped; Sed denotes the occlusion position and
scale in the first and last frame, and N stands for the total
frame number. An example is illustrated in Fig. S.1. Apart
from a relatively low occlusion rate, some objects are fully
visible in intermediate frames.

OvO-Hard In contrast, OvO-Hard begins by selecting an
initial occlusion position pg and scale sy in the first frame.
The position and size of the occluder are then dynamically
adjusted throughout the video, guided by changes in the
bounding box of the occluded object:
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where cg and c; stands for the center of the bounding box
in the initial frame and frame i, h;, w;, hy, and w stands
for the height and width of the ¢ — th frame and the initial
frame. In OvO-Hard, we also apply image feathering tech-
niques to blend the occluder more naturally into the image.

The occlusion rate of the initial frame is constrained to lie
between 0.4 and 0.8.

Figure S.1. Illustration on consistent occlusion. In OvO-Easy,
we first select a proper position and scale in the first and last frame,
and then interpolate in intermediate frames. The stamp is the oc-
cluder in the example.

A.2. Image Transformations
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Figure S.2. Image transformations. We augment our OvO
dataset by incorporating image-level datasets and image transfor-
mation techniques to simulate videos.

In addition to introducing more severe occlusions, we
further augment our dataset in OvO-Hard using the image-
level dataset SA-1B [10]. Specifically, we apply three im-
age transformation techniques: zooming, parallel moving,



and image warping. An illustration of these techniques is
shown in Fig. S.2. The zooming transformation is imple-
mented by center-cropping the image, while image warp-
ing is achieved through a homography transformation. For
parallel moving, we first segment the complete foreground
object using the provided annotations [10, 13]. The back-
ground area is then inpainted, after which the foreground
and background are shifted in parallel to create a motion ef-
fect. For instance, in Fig. S.2, the plane visually appears to
move to the right.

A.3. Other Details

In this section, we will elaborate on the data sources, the
process of occluder selection, and the details of amodal
check including heuristic rules and manual filtering.

Data sources To ensure the diversity of our dataset OvO,
we conducted experiments using subsets of four datasets.
After applying the amodal check, the final dataset consists
of approximately 90K videos from MVImgNet [22], 11K
videos from SA-V [14], 10K videos from Bdd100k [21],
and 24K videos from SA-1B [10]. For constructing OvO-
Easy, we use data from MVImgNet [22] and SA-V [14]. For
the more challenging OvO-Hard, we further add data from
Bdd100k [21] and SA-1B [10]. Additionally, we reserve
approximately 1K videos as the test sets for OvO-Easy
and OvO-Hard, which are used to benchmark our method
against various baselines.

Figure S.3. Illustration on Bdd100K occluders. We select oc-
cluders from Bdd100K since many of the occluders in SA-1B are
not applicable to the autonomous driving context.

Occluders In OvO-Easy, we select approximately 50K
occluders from a subset of SA-1B [10] and around 20K
occluders from a subset of Objaverse [5]. For occluders
sourced from SA-1B, objects are segmented using the pro-
vided annotations, ensuring that the occluder occupies a
significant portion of the image. For occluders from Ob-
javerse, we render rotation videos consisting of 40 frames
using Blender [2]. In OvO-Hard, occluders from Objaverse
are excluded to enhance realism. Additionally, when curat-
ing data pairs for Bdd100k [2 1], we select occluders directly

from Bdd100k [21] to maintain domain relevance, as many
occluders from SA-1B and Objaverse are not applicable to
the autonomous driving context. An example on the occlud-
ers of Bdd100k is shown in Fig. S.3.
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Figure S.4. Illustration on the heuristic amodal check. We ap-
ply three heuristic rules to check whether an object is complete.

Amodal check We apply three heuristic rules to filter out
candidates likely to be incomplete, as illustrated in Fig. S.4.
In the first example, the mask touches the image boundary,
indicating potential incompleteness. The second example
shows a mask with numerous internal holes, suggesting an
inaccurate segmentation. In the third example, the pillow is
positioned behind the foreground bag, failing the depth con-
sistency check. Despite these heuristic rules, some incom-
plete object candidates remain. To address this, we leverage
crowdsourcing to further filter out incomplete samples that
have incorrectly passed the heuristic amodal check.

B. Implementation Details

In this section, we provide detailed explanations of the
training and inference process in Appendix B. 1, the dataset,
metrics and baselines used for amodal completion and
segmentation in Appendix B.2, the dataset curation and
reconstruction pipeline for object reconstruction in Ap-
pendix B.3, the intermediate results for pose estimation in
Appendix B.4, and details on user study in Appendix B.5.

B.1. Training and Inference Details

We trained our model on the OvO-Easy dataset for 7 epochs
and continued training on the OvO-Hard dataset for another
7 epochs, resulting in a total training time of approximately
6 days using 8 NVIDIA A800 (80G) GPUs. Due to com-
putational constraints, all input and target videos were re-
sized to a resolution of 384 x 384. The batch size per GPU
was set to 4, yielding a total batch size of 32. To balance
the dataset, data pairs from SA-V [14] were sampled twice



per epoch. As noted in prior work [11, 16], Stable Video
Diffusion (SVD)[1] is not robust to variations in resolu-
tion. To address this, we further fine-tuned the model on the
Bdd100k subset for 8 epochs at a resolution of 640 x 384,
taking around 20 hours. This is because the typical resolu-
tion used in autonomous driving scenarios significantly dif-
fers from those in MVImgNet[22] and SA-V [14]. We em-
ployed the SVD version configured to predict 14 frames. To
handle additional visible mask inputs, extra channels in the
first layer were added after concatenation and initialized to
zero. A freeze motion bucket and fixed frame rate were used
for simplicity. During inference, conditional samples were
generated using the EDM sampler with 50 steps [9], taking
approximately 20 seconds to produce an output video.

B.2. Amodal Completion and Segmentation

Test Dataset In addition to the test split of OvO-Easy and
OvO-Hard, we curate two additional datasets, Kubric-Static
and Kubric-Dynamic, using the Kubric simulator [8] to
benchmark the generalizability of the models. For Kubric-
Static, we randomly select 2 to 5 objects from GSO [6],
along with a background dome. The objects are placed in
a static scene with randomized scales and positions. A ro-
tating video is rendered using blender [2] by rotating the
camera around the scene, capturing each object’s modal and
amodal masks as well as amodal RGB images. From the
rendered videos, we filter 365 samples with occlusions for
benchmarking, ensuring that at least 10 out of 14 frames in
each video contain occluded objects. For Kubric-Dynamic,
we randomly select 2 to 3 falling objects and combine them
with 2 to 4 static objects placed on the ground as well as a
background dome. A linearly changing camera trajectory is
applied before rendering each frame. Using the same filter-
ing criteria as in Kubric-Static, we select 323 videos with
occlusions for benchmarking.

Metrics Since a significant portion of the synthesized
frames is white, this can inflate the PSNR, SSIM, and
LPIPS values. To address this, we crop the synthesized
amodal object using a dilated bounding box of the ground-
truth (GT) amodal mask and compute the PSNR, SSIM,
LPIPS, and CLIP-T metrics within this specific region.

Baselines Since pix2gestalt [13] can only generate im-
ages at a resolution of 256 x 256, we resize all results to this
resolution when calculating the metrics. For the E2FGVI
baseline, we observed significantly degraded performance
when masking out all but the visible object area. To ad-
dress this, we first change the background to white and then
use the same dilated bounding box of the ground-truth (GT)
amodal mask as the inpainting mask. An illustrative com-
parison of the inpainting masks and the corresponding re-
sults is provided in Fig. S.5.
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Figure S.5. Comparison on inpainting mask. We try two kind
of inpainting mask for the EFGVTI baseline, and the one with
bounding box constraint is significantly better.

B.3. Object Reconstruction

Dataset We also use objects from GSO [6] to create com-
positional occluded scenes. Specifically, we first place a pri-
mary object at the center of the scene. Then, we select 3 to
6 additional objects along with a background dome and ar-
range them around the central object to ensure occlusion oc-
curs. Finally, we rotate the camera around the center of the
scene to generate an occluded video. A total of 20 scenes
are composed for benchmarking.

Reconstruction We directly apply NeRF2Mesh [15] to
the synthesized results for reconstruction, where images
with better cross-view consistency result in higher recon-
struction quality. To enhance performance, NeRF2Mesh
also requires an object mask during reconstruction. We ob-
tain this mask by thresholding the synthesized images.

B.4. Pose Estimation

We select a video in YCB-Video [ 18] and utilize SAM2 [14]
to acquire the visible masks of an object throughout the
video. An intermediate result (synthesized video of the
amodal object) using our method is shown in Fig. S.6.

B.5. User Study

We select 20 videos from unseen datasets including Scan-
Net++ [3, 20], BridgeData [7, 17], YouTube-VOS [19],
YCB-Video [18], and various Internet videos. Each ques-
tionnaire contains 16 questions, asking participants to eval-
uate the completion results across three dimensions: 1)
Content-Quality: The overall quality of the completed con-
tent, 2) Content-Consistency: Temporal consistency of the
completed object, and 3) Content-Plausibility: Whether the
completed object is semantically aligned with its visible
part. A snapshot of the questionnaire interface is shown
in Fig. S.11. We gathered feedback from 36 participants,
resulting in 576 valid responses.
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Figure S.6. Intermediate results on YCB-Video. We visualize
the intermediate synthesized video on YCB-Video.

Visible Mask

Figure S.7. Revealing missing objects. Our method is able to
reveal missing objects by inferring from neighboring frames.

C. Additional Results

We highly recommend browsing the website, which con-
tains comparisons with baselines, more qualitative results
on diverse datasets, and examples of long videos.

C.1. Image Amodal Completion

We also evaluate our method on two image-based datasets
to test whether our model still works for image-level tasks.
We replicate each image 14 times to simulate static videos.
¢ BSDS-A: We evaluate amodal segmentation on BSDS-
A [12], using the same test split as pix2gestalt (P2G).
Since each image has multiple annotations and the spe-
cific annotations used in P2G are unavailable, we ran-

Sample1

Sample2

Figure S.8. Diversity in sampling. We can sample multiple rea-
sonable results due to the inherent ambiguity in occluded area.

Frame 1 Frame 5 Frame 9

Frame 17 Frame 21

Frame 9 Frame 13

Figure S.9. Tackling long videos. Our method is able to extend
beyond 14 frames by progressive generation.

domly select one annotation per image, resulting in 730
objects across 200 images. We perform single-shot in-
ference for both methods, which may cause discrepancies
from the 16-shot setting in P2G paper. Nonetheless, the
overall conclusion remains consistent.

¢ Kubric-Img: We test on 750 images from the Kubric-
Static dataset with occlusion rates between 30% and 70%
to evaluate both amodal completion and segmentation.
Quantitative results in Tabs. S.1 and S.2 as well as vi-

sualized results in Fig. S.12 show our method performs on



Figure S.10. Failure cases. Our method has limitations under cer-
tain challenging conditions. For instance, it may produce blurry
results in areas with complex occlusions, as seen in the hand region
of the first example. Similarly, it struggles to handle extremely
fine-grained and heavily occluded structures, as demonstrated in
the leg area of the second example. Additionally, our method may
fail to perform effectively during drastic and sudden camera move-
ments as shown in the last frame in the third example.

Table S.1. BSDS-A Table S.2. Kubric-Img

Modal P2G Ours PSNR SSIM LPIPS IoU
P2G 17.578 0.781 0.153 75.6

ToU 57.7 68.9 67.6 Ours 17471 0.782 0.146 744

par with image-based methods, indicating its ability to syn-
thesize plausible amodal content, even without video con-
text. We attribute this to the OvO-Hard dataset design,
where persistent occlusion forces the model to learn gen-
uinely consistent amodal representations rather than merely
rely on video cues. Ensuring such consistency makes VAC
innately more complex than image-based tasks.

1
The original input video is shown on the left, and the completed video with the highlighted amodal object is shown on the right.
Content-Quality: The overall quality of the completed content.

Content-Consistency: Temporal consistency of the completed content.

Content-Plausibility: Whether the completed object is semantically aligned with its visible part.

All ratings are the higher the better!

1 0077002
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Figure S.11. Interface of the user study.
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Figure S.12. Visualization on BSDS-A

C.2. More Comparisons

We provide qualitative comparison on ScanNet [3, 20],
BridgeData [7, 17], and YCB-Video [ 18] in Fig. S.13. More
visualized comparisons on Bdd100k [21] and YouTube-
VOS are provided in Fig. S.14. The original resolution of
Bdd100k [21] used for inference is 640 x 384, we crop
out the region of interest for better visualization. Similarly,
for pix2gestalt [13], we crop a square area as input, as the
method requires square images.

C.3. More Qualitative Results

We provide more qualitative results of our method on on
ScanNet [3, 20] in Fig. S.15, Fig. S.16, and Fig. S.17. More
qualitative results on BridgeData [7, 17] are provided in
Fig. S.18, Fig. S.19, and Fig. S.20. More qualitative re-
sults on YouTube-VOS [19] are provided in Fig. S.21 and
Fig. S.22. More qualitative results on YCB-Video [18] are
provided in Fig. S.23 and Fig. S.24. More intuitive visu-
alized results on various datasets and in-the-wild videos are
provided in the local website attached in supplementary ma-
terials.

C.4. Revealing Missing Objects

An object may be completely invisible (occluded by other
objects) in a video clip. We observe that our method is able
to reveal completely missing objects by aggregating infor-
mation from neighboring frames in certain cases. For ex-
ample, as shown in Fig. S.7, the black car is completely oc-
cluded by the white car in front of it in the middle frames,



and our method is able to hallucinate the position, shape,
and appearance of the black car.

C.5. Tackling Long Videos

To extend beyond 14 frames, we introduce a sliding window
mechanism for progressively generating subsequent frames,
as illustrated in Fig. S.9. In the first run, the initial 14
frames are selected, and the amodal object is synthesized.
The synthesized object is then blended back into the video,
as shown in the second row. For the second run, subsequent
frames are concatenated with the previously blended frames
as the input video. The visible masks of the overlap frames
are acquired by thresholding the synthesized object. This
sliding window approach allows our method to effectively
generate videos exceeding 14 frames. Two additional qual-
itative examples are available on the local website.

C.6. Diversity in Sampling

Since amodal completion possesses inherent ambiguity, we
can synthesize multiple reasonable results, and a qualitative
example indicating the diversity is shown in Fig. S.8.

C.7. Failure Cases

We illustrate several failure cases in Fig. S.10. In the first
example, nearly the entire legs and arms of the human are
occluded, representing a severely occluded scenario. Under
such conditions, our method may produce low-quality out-
puts, such as blurry hands and occasionally missing legs.
In the second example, the chair is heavily occluded by the
white table. While it can be inferred that the chair has thin
legs, our method may struggle with accurately reconstruct-
ing thin structures in certain frames. In the third example,
the camera undergoes drastic movements, and the brown
chair becomes heavily occluded from specific viewpoints.
Our method struggles to recover accurate and consistent re-
sults when the object is almost missing.

D. Limitations and Negative Impacts

Limitations We have discussed about several failure
cases in Appendix C.7. Additionally, our method is sen-
sitive to resolution variations due to the constraints of the
SVD architecture. While we can extend beyond 14 frames,
generating extremely long videos remains a challenge. We
hope that advancements in more powerful video diffusion
models will help address these issues in the future. More-
over, as our method incorporates data from only a few
datasets, as mentioned in Appendix A.3, its performance
may degrade when generalizing to vastly different domains,
such as human interactions with other objects, as shown in
the example in Fig. S.10. Incorporating more diverse train-
ing data and curating realistic occlusion scenarios could
help mitigate this issue.

Negative Impacts The use of diffusion models to gen-
erate content raises significant ethical concerns, including
potential privacy violations and the risk of generating bi-
ased content. These models can be misused to spread
misinformation or serve deceptive purposes, eroding trust
and causing societal harm. Additionally, they may pro-
duce misleading or false outputs, causing potential chal-
lenges in fields where accuracy and reliability are cru-
cial.
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Figure S.13. Qualitative comparison on ScanNet [3, 20], BridgeData [7, 17], and YCB-Video [18].
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Figure S.14. Qualitative comparison on YouTube-VOS [19] and Bdd100k [21].
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Figure S.16. Qualitative results on ScanNet [3, 20].



Figure S.17. Qualitative results on ScanNet [3, 20].



Figure S.18. Qualitative results on BridgeData [7, 17].



Figure S.19. Qualitative results on BridgeData [7, 17].



Figure S.20. Qualitative results on BridgeData [7, 17].
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Figure S.21. Qualitative results on YCB-Video [18].



Figure S.22. Qualitative results on YCB-Video [18].
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Figure S.23. Qualitative results on YouTube-VOS [19].
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Figure S.24. Qualitative results on YouTube-VOS [19].



