
Think Twice: Test-Time Reasoning for Robust CLIP Zero-Shot Classification

Supplementary Material

7. Experiment details for section 3

In this section, we present the experimental details for Sec-
tion 3. We perform zero-shot classification on three vari-
ants of the Waterbirds dataset: original variant (OV), core
features on a black background (Core Blk), and core fea-
tures on a white background (Core Wht). We use the seg-
mented bird images from the Caltech-UCSD Birds-200-
2011 (CUB) dataset [48]. The images of water birds were
resampled so that the number of water bird images equals
the number of land bird images, resulting in 9410 images
in total. We utilize the segmented bird images and use
different backgrounds to fill in the images: (1) water/land
backgrounds from the Places dataset [63]; (2) backgrounds
with pure color (black or white). We randomly sample from
these three dataset variants, as illustrated in Figure 9.

• Original variant of Waterbirds testset (OV): This variant
retains both the bird species as the core attribute and the
background habitat as a spurious attribute. While the in-
dividual attributes (e.g., water birds vs. land birds, water
backgrounds vs. land backgrounds) are balanced, their
combinations exhibit spurious correlations. Specifically,
images of water birds with water backgrounds and land
birds with land backgrounds each constitute 40% of the
dataset, whereas water birds with land backgrounds and
land birds with water backgrounds each account for 10%.

• Core Blk & Core Wht: To isolate the effect of background
information, we introduce two additional dataset variants:
Core Blk and Core Wht. In these variants, we took the
segmented bird images, the same foreground as that of
OV, and filled in the background with solid black and
white backgrounds, respectively.

The model used in this experiment is sourced from
OpenCLIP [7] and employs ViT-L/14 [12], pretrained
on the LAION-2B dataset [42]. The text prompts fol-
low CLIP’s standard guidelines [38]: ["A photo of a
landbird.", "A photo of a waterbird."].

8. Experiment details for section 4.1

In this section, we provide details on the experiments con-
ducted for Section 4.1. We evaluate the approaches on the
original Waterbirds test set. The model and text prompts
are identical to those used in Section 3, with further details
available in Section 7.

We introduce the methods utilized in our study, for those
requiring auxiliary models:

• Grounding DINO [27]: Grounding DINO (GDINO) [27]:
GDINO is a zero-shot object detection model. Given the

text prompt ”a bird,” it returns the bounding box of the
bird object in the Waterbirds test set. We crop the test
image based on the bounding box and resize it to 224 ×
224. The cropped image is then processed using the CLIP
model for zero-shot classification.

• GDINO + SAM [21]: SAM is a prompt-based segmen-
tation model that accepts various types of prompts, such
as points or bounding boxes. To achieve precise segmen-
tation, we use the bounding box generated by GDINO as
input to SAM, refining the segmentation of bird objects.
We set the unmasked regions to zero and pass the seg-
mented bird object to the CLIP image encoder for zero-
shot classification.
The information for pure CLIP model methods is listed

as follows:
• Dimension reduction (PCA, TSNE, UMAP): We extract

the image’s latent representation in the form of zimag ∈
RN×d, where N denotes the number of patches. In
ViT/L-14, N = 256. To reduce the dimensionality
from d = 768 to 3, we apply dimensionality reduc-
tion techniques, including principal component analysis
(PCA), t-distributed stochastic neighbor embedding (t-
SNE), and uniform manifold approximation and projec-
tion (UMAP). Each patch is assigned a cluster label based
on c = argmax dreduced forming three distinct clusters.
We then generate segmentation masks corresponding to
these clusters and apply each mask to the original image,
setting the unmasked regions to zero. This process re-
sults in three separate masked images. Next, we extract
the latent representations of these masked images using
the [CLS] token and perform zero-shot classification with
the text prompt ‘‘A photo of a bird’’ to iden-
tify the mask corresponding to the core object. Once the
core segment is determined, we conduct zero-shot classi-
fication on the segmented core object to obtain the final
prediction.

• K-Means Clustering: We generate masks directly from
the high-dimensional image representations. Specifically,
we apply K-Means clustering to the image’s latent repre-
sentation zimag ∈ RN×d, partitioning the representation
into three clusters, resulting in a shape of N × 3. Each
cluster is treated as a segmentation mask. We then fol-
low the same procedure described in the Dimensionality
Reduction approach to identify the core object. Once the
core segment is determined, we perform zero-shot classi-
fication on the segmented core object to obtain the final
prediction.

• Dimension reduction + K-Means Clustering: Sohoni
et al. [45] empirically demonstrate that clustering in high-

Figure 9. Sample images from our Waterbirds dataset variants, presented in the order: OV, Core Blk, and Core Wht.

dimensional spaces often performs poorly compared to
clustering in lower-dimensional representations. Moti-
vated by this observation, we first reduce the dimensional-
ity of the latent space to d = 3 before applying K-Means
clustering to generate segmentation masks. The remain-
ing procedure follows the method introduced above.
We evaluate our methods based on three key aspects:

performance, latency, and GPU usage.

Performance We assess zero-shot classification accuracy,
including both worst-group accuracy (WG) and average
accuracy (Avg). For methods that generate core feature
masks, we compute the DICE score to evaluate how well the
predicted mask covers the core object. The DICE score is
a standard metric for assessing segmentation performance,
defined as:

DICE =
2× |A ∩B|
|A|+ |B|

, (1)

where A represents the predicted segmentation region, and
B is the reference segmentation. Since the Waterbirds test
set does not provide ground-truth segmentation masks, we
use GDINO+SAM’s segmentation results as the reference,
as its performance closely aligns with the Core Object Only
set.

Latency We measure the inference time for each method,
running all experiments on a server equipped with four RTX
A5000 GPUs, an AMD EPYC 7313 16-Core Processor, and
256 GB of memory. The inference time is reported in min-
utes.

GPU usage Each method is executed on a single GPU
with a batch size of 1. We report the peak GPU memory
usage during inference.

9. Experiment details

In this section, we present the detailed experimental setup
for our main experiment in Section 5.1. We use y to rep-
resent the target label and a to denote the spurious feature.
The datasets used in our study include:

Dataset introduction
• Waterbirds: The Waterbirds dataset is a synthetic

benchmark designed to study spurious correlations
in image classification. It consists of images
with two bird categories: waterbirds and land-
birds, each placed against either water or land back-
grounds, i.e. y ∈ {Waterbird, Landbirds}, a ∈
{Water background, Land background}. There is a spu-
rious correlation between bird type and background, as
waterbirds are predominantly shown with water back-
grounds and landbirds with land backgrounds.

• CelebA: CelebA is a large-scale face attribution dataset.
In this study, we utilize the hair color annotations, y =
{blond, non-blond}, and use gender a = {female,male}
as a spurious feature.

• ISIC: ISIC is a large-scale resource for skin cancer diag-
nostics. Following the study by Wu et al. [54], we classify
skin lesions with target labels y = {benign,malignant}.
The spurious feature is the presence of color patches
a = {colored patches present, no colored patches}.

• CXR: CXR is a collection of chest radiographs used for
diagnosing various lung diseases. In this study, we follow
the setting from [1] to classify images into two categories:
y ={non-pneumothorax and pneumothorax}. We con-
sider the presence of support devices, such as catheters
or tubes, as spurious features that could bias the model’s
predictions.

• Metashift: Metashift is a dataset for classifying y ={cat,
dog}. Following the study by Wu et al. [54], we consider
the background as the spurious feature a = {indoors},
Since all test samples are indoors, this feature is nega-
tively correlated with dogs, as dog images are more fre-
quently found in outdoor settings.

• UrbanCars: The task in UrbanCars is to classify
y={Urban Cars, Country Cars}. The dataset includes two
additional components: background and co-occurring ob-
jects. Following Yang et al. [57], we define the spurious
feature as the background a ={Urban background, Coun-
try background}.

Baselines introduction The baseline models considered
in our comparison are categorized into two groups: (1) Ro-

bustifying Vision-Language Models (VLMs), and (2) Test-
Time Adaptation methods. We provide detailed descrip-
tions of state-of-the-art models.

• Orth-Cali [8]: Orth-Cali is a debiasing method for vision-
language models that focuses on text embeddings. It re-
quires a set of text prompts representing spurious features
to identify biased directions within the embedding space.
By constructing a projection matrix, Orth-Cal projects the
text embeddings onto the null space orthogonal to these
spurious directions.

• Perception CLIP [2]: Perception CLIP is a zero-shot
classification method that enhances the generalizability
of vision-language models like CLIP by providing more
context in text prompts. Given an image, the model first
infers contextual attributes such as background, orienta-
tion, or other relevant features. The model then performs
object classification conditioned on the inferred contex-
tual attributes by incorporating descriptions of these at-
tributes into the text prompts.

• ROBOSHOT [1]: ROBOSHOT is a method designed to
reduce spurious correlations in VLMs. It utilizes large
language models (LLMs) to identify potential spurious
correlations by generating text prompts that represent
these biases. It involves projecting image embeddings
onto a subspace orthogonal to the embeddings of these
spurious text prompts, mitigating the influence of un-
wanted correlations.

• TIE*: TIE* is a method designed to mitigate spurious
correlations in zero-shot classification tasks. It operates
by adjusting image embeddings to reduce the influence
of spurious features. The process involves identifying
spurious text embeddings, which are derived from text
prompts representing the spurious features. TIE* then
translates the latent representations of image embeddings
along the negative direction of these spurious text embed-
dings. This translation aims to reduce the impact of spu-
rious features in the image representation.

• Bias Elimination with Nonlinear Debiasing of Vision
Language Models (BEND-VLM) [14]: BEND-VLM is
a debiasing technique for text embeddings, consisting of
two key steps. The first step follows the Orth-Cal ap-
proach, projecting text embeddings onto a subspace or-
thogonal to the spurious feature to mitigate bias. In the
second step, a reference image set is used to identify the
most relevant images, and the text embedding is adjusted
to maintain equal distance from image embeddings with
different spurious labels.

• MeanShift for Test-time Augmentation (MTA) [59]:
MTA is a test-sample ensemble method designed to en-
hance robustness. It generates multiple augmented views
of a test sample and computes a robust mean of the aug-
mented representations. The updated embedding is then
used for zero-shot testing.

• Test entropy minimization (TENT) [49]: TENT is a test-
time adaptation method that enhances model confidence
by minimizing the entropy of its predictions. It up-
dates the model’s parameters, specifically the channel-
wise affine transformations, and estimates normalization
statistics to adapt to new test data distributions.

• Test-Time Low-rank adaptation (TTLRA) [17]: TTLRA
applies low-rank adaptation (LoRA) to the vision en-
coder, updating attention weights by maximizing pre-
diction confidence. This is achieved by minimizing a
weighted entropy loss across various augmented views of
the test sample, enabling the model to adapt during test-
ing.

• Test-Time Label-Shift Adaptation (TTLSA) [46]:
TTLSA is a method designed to address label distribution
shifts between training and test domains by capturing dis-
crepancies in the joint distribution p(y, a) The approach
estimates the test-set priors and reweights the model’s
predictions using the ratio of these estimated priors to the
training-set priors, mitigating the adverse effects of label
shift.

We implement all baseline methods using their official
source code from GitHub, ensuring that all methods are
evaluated with the same backbone models for a fair com-
parison. For text prompts, we use those provided by the
authors if the methods have been tested on the respective
dataset. For methods not originally evaluated in the corre-
sponding papers, we apply the same text prompts as used in
the zero-shot setting and our approach. For methods requir-
ing spurious text prompts, we follow the authors’ guidelines
to generate them appropriately.

10. Implementation details and text prompts

To ensure reproducibility, we provide the details of our ex-
perimental setup.

Model and Preprocessing Experiments in general
datasets are conducted using the OpenCLIP pre-trained
model ViT-L-14 [7] with the pre-trained weights
“laion2b s32b b82k”. Each image is resized to
224 × 224 to be compatible with the ViT-L-14 configu-
ration. By default, CLIP returns the representation of the
[CLS] token. To obtain the latent representation for each
patch, we set

model.visual.pool_type = None

The output image embedding has a shape [1, 257, 768],
we discard the CLS token, resulting in a final shape of
[1, 256, 768]. We apply this image representation to perform
semantic identification, and core feature zero-shot classifi-
cation.

Text embedding configuration For general text embed-
ding, we set: model.text pool type = ’last’
This configuration achieves the best results. For task-
specific text embedding, we use the default setting of pool
type.

Dimensionality Reduction and Clustering
• PCA: We apply torch.svd lowrank with a rank of

16 and retain 3 principal components to ensure consis-
tency across all datasets.

• K-Means Clustering: Implemented using scikit-learn
[36], with initialization set to “auto”.

Zero-shot Inference We perform two rounds of zero-shot
inference:
• Core Segment Identification: We use the [CLS] token as

the pooling method to represent all patches. Segmen-
tation normalization is not applied, as it performs best
across all datasets.

• Zero-Shot Classification on Core Segments: We use the
[CLS] token as the pooling method. We normalize the
core segmentation before classification.
The aforementioned settings are consistent across all

datasets. Dataset-specific hyperparameter configurations
are detailed in Table 5, and all text prompts are provided
in Table 6.

Table 5. Hyperparameter details

Dataset Queue length Number of clusters

Waterbirds 28 3
CelebA 12 3
Metashift 24 3
UrbanCars 50 3
ISIC 32 3
CXR 42 3

10.1. Latency analysis
We further analyze the test-time latency associated with dif-
ferent computational steps. Compared to the standard zero-
shot classification task, the increase in latency can be at-
tributed to the following components:
• Join queue: Extracting image latent representations from

the image encoder and storing them in a queue.
• PCA: Applying PCA to patches based on the queued rep-

resentations.
• K-means: Segmenting the image using features trans-

formed by PCA.
• Segmentation identification: Performing an additional

zero-shot classification to identify the segment contain-
ing the core feature.

Figure 10. Contribution of each component to the increase in test-
time latency.

Figure 10 reports the proportion of time consumed by
each procedure. Join Queue accounts for approximately
three-quarters of the total increase in latency. Since join-
ing the queue requires an additional feedforward pass dur-
ing testing, it significantly contributes to the overall latency.
We note that the reasoning step (PCA + K-means) only ac-
counts for one-fourth of the latency increase, indicating its
efficiency. Although total test-time latency increases, this
trade-off provides substantial improvements in performance
and robustness.

11. Visualization and numerical results for Sec-
tion 5.4

In this section, we provide additional details on the ablation
study. In Section 5.4.2, we analyze the impact of differ-
ent mask types on performance. For the Gaussian blur, we
apply a Gaussian blur filter with a kernel size of 51 and a
sigma of 30. To ensure the feature is sufficiently blurred,
we apply this filter three times. A visual illustration of the
different masking types is presented in Figure 11.

We also present numerical results corresponding to Fig-
ure 8, offering a more precise evaluation. These results are
detailed in Tables 7 and 8.

Beyond the results presented in Section 5.2, we further
evaluate the effectiveness of TTR across different backbone
models. We provide additional results on ViT/B-32 and
ViT/H-14, as illustrated in Figure 12. Our observations in-
dicate that across various backbone models, TTR consis-
tently demonstrates strong performance in identifying core
features.

Using a larger-scale backbone model leads to more re-
fined object segmentation. For instance, in the UrbanCars
dataset, the ViT/B-32 model struggles to accurately distin-
guish cars from distracting features, such as stop signs. In

Table 6. Text prompts details

Dataset Label prompts General prompts

Waterbirds [a photo of a landbird., a photo
of a waterbird.]

[a photo of a bird.]

CelebA [a photo of a celebrity with dark
hair., a photo of a celebrity
with blonde hair.]

[A photo of visible hair.]

Metashift [a photo of a cat., a photo of a
dog.]

[a photo of a pet.]

Urbancars [a photo of an urban car., a
photo of a country car.]

[a photo of a car.]

ISIC [A photo of benign melanoma., A
photo of malignant melanoma.]

[A photo of melanoma.]

CXR [a photo of no pneumothorax., a
photo of a pneumothorax.]

[An X-ray of a lung.]

contrast, the core features are less affected by these con-
current objects with ViT/H-14. We attribute this to the
difference in semantic representation capability between
smaller and larger models. Additionally, this performance
gap can be partially explained by differences in patch size,
as smaller models typically use larger patches, leading to
reduced granularity in feature extraction.

Table 7. Zero-Shot classification results with ViT/Base-32 model

ViT/B TTR (ViT/B)
WG↑ Avg↑ Gap↓ WG↑ Avg↑ Gap↓

Waterbirds 43.68 69.85 26.17 61.84 77.88 16.04
CelebA 78.89 84.27 5.38 81.11 85.02 3.91
Metashifts 88.56 89.83 1.27 90.21 91.50 1.29
Urbancars 16.80 51.70 34.90 22.80 56.90 34.10

Table 8. Zero-Shot classification results with ViT/Huge-14 model

ViT/H TTR (ViT/H)
WG↑ Avg↑ Gap↓ WG↑ Avg↑ Gap↓

Waterbirds 49.69 85.40 35.71 62.46 92.60 30.14
CelebA 82.15 84.74 2.59 83.00 85.00 2.00
Metashifts 81.70 89.09 7.39 89.54 92.24 2.70
Urbancars 6.80 55.90 49.10 58.80 77.60 18.80

Figure 11. Applying different types of masks to regions unrelated
to the core feature.

Figure 12. Ablation Study: TTR identified core features using different backbone models.

	Experiment details for section 3
	Experiment details for section 4.1
	Experiment details
	Implementation details and text prompts
	Latency analysis

	Visualization and numerical results for Section 5.4

