
Tracing Copied Pixels and Regularizing Patch Affinity in Copy Detection

Supplementary Material

A.1. More about DISC21 Data
The DISC21 competition [11] comprises four datasets:

training set, reference set, dev set (which
is evenly split into two parts: dev set part I and dev
set part II) and test set. All data in training
set is unlabeled. Both dev set and the test set
function as queries, sharing reference set. According
to the rules outlined on the DISC21 official website1, the
competition is divided into two phases. In the first phase,
dev set part I and its labels are made public, serv-
ing as a validation set for the participants. Meanwhile, dev
set part II is also made public, but its labels remain
concealed for the purpose of ranking participants’ perfor-
mance in the first phase. Both data and labels in test
set will not be disclosed during this phase. In the sec-
ond phase, images in test set will be released for the
final rankings. After the competition, labels for both dev
set part II and test set will be accessible. For
clarity, please refer to Tab. 6. It is noteworthy that the com-
petition rules allow the fine-tuning on dev set part I.
Since times of evaluating on dev set part II during
the first phase are no limited, while times of evaluation on
test set is restricted, there are more reported results
on dev set part II from public papers than those on
test set. Therefore, Tab 1 of this paper utilizes results
on dev set part II, while the simulated results on
test set are presented in Tab. 4.

A.2. More about Evaluation Protocols
The formulas for calculating mAP (mean Average Preci-

sion) and µAP (unified Average Precision) are as follows:

mAP =
1

N

N∑
i=1

AP({sij |j = 1, 2, . . . }), (A.1)

µAP = AP({sij}), (A.2)

where sij denotes similarity score between query i and ref-
erence j. mAP averages Average Precision (AP) of each
sample, while µAP concatenates similarity scores of all im-
age pairs to compute AP. Consequently, under mAP formu-
lation, the distribution of similarity scores for each query
may vary significantly. While in practical scenarios, a
fixed threshold is typically used to filter edited copy pairs.
In cases where the distribution of similarity scores varies
greatly, mAP may not accurately reflect the performance of

1https://www.drivendata.org/competitions/group/image-similarity-
challenge

1 -1

mAP

uAP

Figure 5. mAP v.s. µAP. In this case, mAP is 100%, because all
positive samples are ranked at the first place in the view of each
query. While no threshold could be set to achieve that perfect per-
formance. In µAP, results are concatenated together to calculate
precision of each threshold. Thus, µAP could better reflect the
real performance of model. Mathematically, mAP also serves as
an upper bound of µAP.

model, as the case in Fig. 5. In contrast, µAP computes
AP based on all aggregated scores, which better simulates
real-world scenario.

A.3. More about Post-Processing

A.3.1. Score Normalization

Score normalization (SN) is a widely used technique in
data mining. SN maps data from different distributions
to a common distribution. If the distributions of similar-
ity score vary among queries, a global threshold is difficult
to be set. Then SN could effectively address this problem
and improve µAP significantly. We refer to SN method in
SSCD [35], which is formulated as follows:

sij = cos(zi, zj)− α
1

kend − kstart + 1

kend∑
k=kstart

cos(zi, zk-NN),

(A.3)
where sij is normalized score of query xi and reference xj ,
zi and zj are their features extracted by descriptor. k-NN
is the top-k nearest neighbor of query xi in auxiliary data.
Here we simply employ training set as auxiliary data
and set kstart = 0, kend = 9, α = 1, which means that takes
the closest neighbor in training set as bias.

A.3.2. Feature Stretching

Feature stretching a technology to stabilize scores across
different queries. It is introduced by Wang et al. in
BoT [49]. In short, query feature zq is stretched by formula



Training Set Reference Set Dev Set Part I Dev Set Part II Test Set
Data Labels Data Labels Data Labels

Scale 1,000,000 1,000,000 25,000 25,000 50,000

Accessible
Phase 1 ! ! ! ! ! % % %

Phase 2 ! ! ! ! ! % ! %

After ! ! ! ! ! ! ! !

Table 6. Details of DISC21 datasets. In “Accessible” part,!denotes that corresponding data is available during that period of time, and
%denotes unavailability.

Method µAP R@1 Method µAP R@1
SSCD [35] 14.22 20.24 ViT-S 27.07 34.68

S-square [33] 14.51 21.05 ViT-B 31.66 37.78
Lyakaap [59] 13.80 18.02 ViT-S† 25.38 31.57

AnyPat. Base. [51] 16.18 20.54 ViT-B† 28.05 34.36

Table 7. Results on AnyPattern. All methods are evaluated with
“SmallPattern” protocol . “AnyPat. Base.” denotes Baseline in
AnyPattern. CopyNCE results are marked in blue and † means
results achieved with augmentations that aligned with Lyakaap.

SSCD SN [35] ViT-S SN ViT-B SN
Descriptor µAP 64.99 70.59 71.57
Matching µAP 46.92 51.32 50.05

Table 8. Results on VSC2022. Results are produced by official
baseline implementation of VSC2022 on its training set.

below:

z̄q = β

∑k
i=1 si
k

zq, (A.4)

where β is stretching coefficient, {s1, s2, . . . , sk} denotes
the similarity scores (inner product) of k-NN images of
query in the auxiliary dataset. After all query features are
stretched, euclidean distance is utilized to ranking similar-
ity between query and reference. In this paper, we follow
the settings in BoT [49] that β = 2.5, k = 5 and let training
set as the auxiliary set.

A.4. Experiments on more datasets
AnyPattern [51]. To evaluate the generalization of

CopyNCE to unseen copy edits, we conducted experiments
on AnyPattern [51] test set. Note that models are only
trained on training set of DISC21, without any fine-
tuning on dev set part I. AnyPattern encompasses
rare and aggressive copy edits that are completely disjoint
from the augmentation pipeline employed during Copy-
NCE training. As reported in Tab. 7, under the “Small-
Pattern” setting, CopyNCE with ViT-S achieves 27.07%
µAP and 34.68% R@1, whereas the ViT-B variant attains
31.66% µAP and 37.78% R@1. Although our original aug-
mentation is more aggressive than competing approaches,
we further aligned it with the augmentation settings of

Test
Set

Model Resolution
Metrics

mAP µAP RP90
Dev II ViT-S

224× 224
90.6 83.5 75.4

Dev II ViT-B 90.5 83.5 76.7
Dev II ViT-S

336× 336
91.3 85.8 79.9

Dev II ViT-B 91.3 85.7 80.1

Table 9. Scaling of matcher. All results are achieved without
finetuning on dev set part I.

Test
Set

Model Resolution
Metrics

mAP µAP RP90
Dev II ViT-S

224× 224
76.5 70.5 63.6

Dev II ViT-B 77.9 72.3 65.2
Dev II ViT-S

336× 336
75.0 69.8 63.9

Dev II ViT-B 76.2 71.3 66.0

Table 10. Scaling of descriptor. All results are achieved without
finetuning on dev set part I.

Lyakaap [59] and retrained CopyNCE from scratch. Even
under this reduced augmentation, CopyNCE still achieves
25.38% µAP / 31.57% R@1 (ViT-S) and 28.05% µAP /
34.36% R@1 (ViT-B). Despite the expected performance
drop due to weaker augmentation, these results exceed
the best competing method by at least 9.20%+ µAP and
10.52%+ R@1. This empirical evidence corroborates that
CopyNCE possesses superior generalization to previously
unseen infringement patterns.

VSC2022 [36]. To further validate CopyNCE in the
context of video copy detection, we evaluate the model
trained on DISC21 by following the official baseline1 of
VSC2022 [36] and testing it on the VSC2022 training set.
Under score normalization, CopyNCE surpasses SSCD by
5.6%+ Descriptor µAP and 3.1%+ Matching µAP. These
results indicate that CopyNCE, when employed as a feature
extractor for video copy detection, still delivers impressive
performance.



A.5. Scaling Performance
Scaling performance matters in cases of subtle and com-

plex edits. In this section, we explored how resolution and
model size affect performance. For matcher, increasing
resolution leads to improvements of 2.2%+ µAP / 3.4%+
RP90. However, unlike results of “Separate” shown in
Tab. 1, enlarging model size for CopyNCE fails to boost
performance. We hypothesize that matcher allows interac-
tion between query and reference tokens, while CopyNCE
provides direct supervision for interaction. Such guidance
is sufficient enough for either ViT-S or larger ViT-B to tell
whether query edits upon reference. And this will lead to
performance saturation in terms of model size. This could
be another evidence of effectiveness of CopyNCE.

For descriptor, scaling model size brings lifts of 1.5%+
µAP / 1.6%+ RP90 in Tab. 10, which is consistent with
expectations. However, increasing resolution has negative
effects. We believe the primary reason is that training de-
scriptor requires a larger batch size. However, increasing
the resolution significantly raises the memory consumption
for ViT. To accommodate training at a higher resolution, it
is necessary to reduce the batch size, which leads to the de-
cline in descriptor performance. Another potential reason
will be discussed in Sec. A.12.

A.6. More about Implementation Details
All our training and finetune implementation details are

listed in Tab. 11 and Tab. 12. Note that due to numerical
stability, we re-implemented the average and one-hot mode
of CopyNCE in order to conduct experiments of γ = 0 and
γ = +∞. And in finetuning, no pixel mappings are avail-
able due to human-made edits. Thus, only baseline loss is
utilized for descriptor and matcher.

A.7. More about Model Arch
The architectures of both matcher and descriptor are il-

lustrated in Fig. 6. Matcher comprises an encoder and a
fusion module, both constructed from attention blocks of
same architecture. Matcher takes query and reference im-
ages as input, encoding each through encoder to obtain
patch tokens. Subsequently, a learnable [CLS] token is
concatenated with the tokens from both query and refer-
ence. And then they are passed to the fusion module for in-
formation interaction. Finally, CopyNCE supervises fused
tokens, while binary cross-entropy (BCE) loss optimizes
[CLS] token through a fully connected head. To enhance
efficiency and reduce computational load, matcher is con-
structed based on a default ViT-S, which has 12 layers of
attention blocks. The first eight layers form the encoder,

1https://github.com/facebookresearch/vsc2022/blob/main/docs/baseline.md
2https://github.com/facebookresearch/dino

E
n
c
o
d
e
r

E
n
c
o
d
e
r

Fusion

Head

Concat

E
n
c
o
d
e
r

E
n
c
o
d
e
r

Head

Q RQ R

CopyNCE

BCELoss

Q
Tokens

R
Tokens

CLS
Token

C
o
p
y
N
C
E

Q
Tokens

R
Tokens

Q CLS
Tokens

R CLS
Tokens

InfoNCE
KoLeo

Descriptor Matcher

Figure 6. Detailed architecture of matcher and descriptor.

while the last four layers constitute the fusion.
In contrast, descriptor is solely based on ViT. Upon

receiving query and reference, descriptor extracts their
[CLS] tokens and patch tokens. In baseline sce-
nario, [CLS] tokens of both images are trained with In-
foNCE [45] and KoLeo [39] loss. Within our framework,
CopyNCE regularizes patch tokens in the last layer. Simi-
larly, descriptor defaults to using ViT-S for simplification.

Additionally, the property of both matcher and descriptor
are listed in Tab. 13.

A.8. More about Tricks
A.8.1. Global Hard Negative Mining

During training of descriptor, although hard negative
mining (HNM) is performed in both KoLeo and InfoNCE,
the mining process is constrained within batch, which is
limited by batch size. Thus, for a training set consisting
of millions of images, the probability of identifying hard
samples in k-NNs is minimal. To address this issue, we uti-
lize global hard negative mining (GHNM) as Algo. A.8.1.
This method ensures that every sample in the mini-batch



Settings Parameters
Matching Descriptor

Resolution 224× 224 / 336× 336

Input

Augmentation
color jitter, random grayscale, random blur, overlay text,

overlay emoji, random flipping, affine, perspective, random resized-crop,
overlay image, random erasing, etc.

Positive Rate 0.3 -
Hard Negative

Mining p=0.5, k-NN (k=128) p=1.0, k-NN (k=8)

Model Arch
ViT-S/16 ViT-B/16 [9]

8 Encoder Layers + 4 Fusion Layers ViT-S/16 ViT-B/16 [9]

Linear Head - 512 dims

Optim

Pretraining DINO [3] ViT-S/16 ViT-B/162 DINO [3] ViT-S/16 ViT-B/162

Batch Size 8 GPUs × 32 8 GPUs × 96
Epoch 30 (base lr = 1e− 3) + 30 (base lr = 2e− 4) 30 (base lr = 6e− 4)

Optimizer AdamW (β=[0.9, 0.999 ])
Weight Decay 0.04
Learning Rate 0.001×

√
bs/1024 0.0006×

√
bs/1024

Scheduler Cosine Scheduler
Min lr 2.0e− 06

Warmup Epoch 1
Clip Grad 3.0

Loss Baseline Loss BCELoss × 1 InfoNCE × 1 + KeLeoLoss × 5
CopyNCE Refer to Sec. 4

Table 11. All detailed settings in our training pipeline. For the aspects of data augmentation that have been omitted, please refer to our
code.

Settings Parameters
Matching Descriptor

Resolution 224× 224 / 336× 336

Input

Augmentation resize
Positive Rate 0.3 -

Hard Negative
Mining Off Off

Model Linear Head - 256 dims

Optim

Pretraining CopyNCE CopyNCE
Batch Size 8 GPU × 32 1 GPU × 96

Epoch 20 (base lr = 2× 10−4) 30 (base lr = 1× 10−4)
Learning Rate 2× 10−4 ×

√
bs/1024 1× 10−4 ×

√
bs/1024

Loss Baseline Loss BCELoss × 1 InfoNCE × 1 + KeLeoLoss × 5
CopyNCE Off

Table 12. All detailed settings in our finetune pipeline. If certain settings are not listed in this table, they are set to be the same settings
used in training by default.

can at least find a k-NN-level negative sample, significantly
improving the lower bound for hard negative mining. We
conduct ablation studies on GHNM and the results are re-
ported in Tab. 14. Compared to baseline w/o GHNM, which

employs standard hard negative mining (HNM) within the
batch, GHNM leads to substantial 7.1% µAP / 30.6% RP90
enhancement for descriptor, clearly demonstrating the ne-
cessity of GHNM.



Encoder Fusion Extensive Task
Descriptor Att. Block Cosine 1 v.s. N Coarse Retrieval
Matcher Att. Block Att. Block 1 v.s. 1 Fine Matching

Table 13. Property of descriptor and matcher. “Att. Block”
denotes Attention block for short. Descriptor extends well because
it retrieves images through vector similarity and can yield N results
with a single matrix multiplication. While matcher has to perform
classification pair by pair.

Q

R

w/o GHNM w/ GHNM

P1 P2 P3 P1 P4 P2 P5 P3 P6

KNN KNN KNNNegative

Figure 7. Demonstration of GHNM.

Method Parameter Metrics
mAP µAP RP90

Baseline 76.4 68.9 60.6
Baseline w/o GHNM 77.1 57.7 30.0

Table 14. Ablation studies of GHNM on descriptor.

Algorithm 1 Global Hard Negative Mining (GHNM)
Input: Batch Size N .
Input: KNN constructed by DINO [3] features.
Output: Mini-batch {[x, x′]i|i = 1, . . . , N}.
1: Init mini-batch B = Ø.
2: for i = 1, . . . , N

2
do

3: Sample random image x.
4: Generate positive pair [x, x′] of x.
5: Randomly select global hard negative xhn of x from KNN.
6: Generate positive pair [xhn, x

′
hn] of xhn.

7: Update mini-batch B = B ∪ {[x, x′], [xhn, x
′
hn]}

8: end for

A.8.2. Local Crops Ensembling
In copy detection, there are numerous edited copy in-

stances of small regions, which present significant chal-
lenges to algorithms. In response to this issue, a straight-
forward approach is local crops ensembling, abbreviated as
LCE. The primary concept of LCE is to crop query q and
reference r according to a fixed rule, followed by pairwise
comparisons between the cropped queries and references.
Ultimately, LCE takes the maximum score as the copy score
of query q and reference r. For matcher, LCE takes the
highest copy probability, while for descriptor, it takes the

maximum cosine similarity.
As posted in Tab. 1, LCE significantly enhances matcher

performance (2.9%+ µAP / 4.0%+ RP90). However, the
downside of LCE is also evident: it requires substan-
tial computational resources. In our implementation, we
cropped 26 regions (25 local + 1 global) from query and
10 regions (9 local + 1 global) from reference, leading to
a corresponding computation cost of 260x. These regions
include rotation and different ratios of crops. Please refer to
our code for more details of LCE. It is important to empha-
size that we design this complexity mainly because some
approaches in Tab. 1 adopt sophisticated rules for the best
performance and we follow them for fair comparison.

A.9. More about Candidates List for Matcher
As illustrated in Tab. 13, matcher can only perform clas-

sification pair by pair. According to Tab. 6, reference
set has 1M images and dev set or test set has over
25k images. If we force matcher to classify all possible
query and reference pairs, it will incur exceptionally high
computational cost. To solve this problem, descriptor is
first utilized to recall as many edited copy cases as possi-
ble to generate a candidate list. Next, we apply matcher to
classify all pairs within this candidate list. When recalling
with descriptor, LCE mentioned in Sec. A.8.2 is employed.

Specifically, for each crop of query, we identify k-NN
in reference set and each query recalls 390 candidates. We
ensemble the candidate lists from “Baseline” (ViT-B, 224×
224) and “CopyNCE” (ViT-B, 224× 224), recalling a total
of 780 candidates. And then duplicated candidates for each
query will be removed and the top 400 candidates form a
multi-model fused candidate list. Finally, we use matcher
“CopyNCE” (ViT-S, 224×224) in conjunction with LCE to
select the top 10 highest-scoring candidates to generate the
final candidate list. All matcher will subsequently utilize
this candidate list for inference. Recall of different steps
is listed in Tab. 15. Note that recall could be viewed as
the upper bound of mAP and µAP, i.e., our reported µAP
of matcher in Tab. 1 can no longer be greater than 93.4%.
More details could be found in our code.

A.10. Solutions of DISC21 Phase 2
DISC21 Phase 2 used test set to measure perfor-

mance, which is more challenging compared to dev set
part II. To achieve better results on test set, we
follow the official rules and finetune both descriptor and
matcher on dev set part I, with the tuning parame-
ters detailed in Tab. 12. It is important to note that, ac-
cording to DISC21 rules, “Descriptor Track” only allows
features with 256 dim. Therefore, we reduced the default
linear head dimensions from 512 to 256.

For “Descriptor Track”, we finetune “CopyNCE” de-



Step Model Tricks # Candidates RecallType Method Backbone Resolution
0 - - 1,000,000 100.0%

1 Descriptor Baseline ViT-B 224× 224 LCE 400 94.3%CopyNCE
2 Matcher CopyNCE ViT-S 224× 224 LCE 10 93.4%

Table 15. Recall of dev set part II in different candidates retrieval steps.

Step Model Tricks # Candidates RecallType Method Pre-train Backbone Resolution
0 - - 1,000,000 100.0%

1 Descriptor Finetune Baseline ViT-B 224× 224 LCE 400 91.3%CopyNCE
2 Matcher Finetune CopyNCE ViT-S 224× 224 LCE 10 90.1%

Table 16. Recall of test set in different candidates retrieval steps.

scriptor (ViT-B, 336 × 336) to obtain the final descriptor
and perform inference at 336 × 336. The result presented
in Tab. 4 is achieved with feature stretching (as described
in Sec. A.3.2). To obtain the candidate list for matcher,
we repeat the process outlined in Sec. A.9 with the distinc-
tion that descriptors used for retrieval are finetuned on dev
set part II. The recall after different steps are listed
in Tab. 16. Finally, we utilized finetuned matcher (ViT-S,
336× 336) to achieve the result shown in Tab. 4.

A.11. More about Reverse Operation of Table

Figure 8. Reverse issue of table T.

When performing the reverse operation on the coordi-
nate table T, the keys and values are often not uniquely cor-
responding, as multiple keys may correspond to the same
value. If table T is reversed, a single key may correspond
to multiple values. In such cases, we apply a row-by-row

reversal rule, where the subsequently reversed value over-
rides the previous one. For instance, in the case shown in
the diagram, if image Io is magnified to twice its size and
overlaid on image Ia, the coordinates (15, 31), (15, 32), (16,
31), and (16, 32) in image Ia are tracked to the pixel at co-
ordinate (78, 96) in image Io. Therefore, if table Tao is
reversed, key coordinate (78, 96) will correspond to multi-
ple value coordinates. Following the row-by-row reversal
process, the later value will override the earlier one, making
(78, 96) correspond to (16, 32).

A.12. More about ResNet experiments

For a 224×224 input image, ResNet-50 yields 7×7 = 49
regional features, whereas ViT with the default patch size
of 16 × 16 produces 14 × 14 = 196 patch tokens. To
align the spatial granularity of ResNet-50 with that of ViT,
we upsample the input to 448 × 448 in our ResNet-50 ex-
periments. Without this alignment, CopyNCE fails to con-
fer performance gain. We attribute this phenomenon to the
fact that, for descriptor, the fraction of image area occupied
by each regional feature critically modulates the efficacy of
CopyNCE, and 14 × 14 appears to constitute an optimal
trade-off. Tab. 10 also corroborates this hypothesis that in-
creasing the input resolution from 224 × 224 to 336 × 336
does not improve performance.

A.13. More Visualization

To better visualize the effectiveness of CopyNCE series,
we provide additional cases that include both success (Fig. 9
for matcher and Fig. 11 for descriptor) and failure (Fig. 10
for matcher and Fig. 12 for descriptor) examples of matcher



and descriptor. In success cases, the copied images are cor-
rectly identified with the highest scores. Some of these
cases even applied a large number of image transformations.
This indicates that CopyNCE series is capable of handling
most common edited copy cases. However, it remains evi-
dent that when copy area is relatively small, the descriptor
is less effective compared to the matcher, as scores of de-
scriptor decline significantly when the proportion of copy
regions decreases. In failure cases, edited images generally
employed highly exaggerated transformations that fused the
model, which still remained a challenge to our models.

A.14. Potential Limitations
Unlike image-level supervision, CopyNCE requires a co-

ordinate table as their supervisory signal. For an edited copy
pair under the default settings, a table containing 224× 224
key-value pairs needs to be generated. Therefore, training
process may encounter CPU bottlenecks, resulting in longer
training time for CopyNCE compared to that for image-
level supervised pipelines.

Besides, to ensure a fair comparison with other SOTA
methods, CopyNCE utilizes the LCE trick when obtaining
matcher results, which significantly enhances performance.
However, in practical applications, the high computational
cost of LCE makes it nearly impossible to be leveraged in
real-life applications. Regarding this limitation, we argue
that even without LCE, CopyNCE still is still capable to
yield competitive results, as shown in some cases in Tab. 1.

Finally, since copy detection emphasizes features that
contain rich texture information, such features often lack se-
mantic understanding compared to models of SSL or other
image retrieval tasks. Consequently, they tend to focus
on detailed texture information between two images while
overlooking semantic foregrounds.



Query: Q34528 Rank #1: R365631 0.9995 Rank #2: R399521 0.0041 Rank #3: R095051 0.0007 Rank #4: R108434 0.0003 Rank #5: R717778 0.0002

Query: Q39408 Rank #1: R224027 0.9955 Rank #2: R485376 0.0035 Rank #3: R138662 0.0012 Rank #4: R547459 0.0005 Rank #5: R876553 0.0003

Query: Q48947 Rank #1: R692678 0.9992 Rank #2: R247777 0.0230 Rank #3: R471319 0.0225 Rank #4: R758056 0.0204 Rank #5: R914295 0.0054

Figure 9. Success cases of matcher. In each row, the query image is placed in the first column, followed by five recalled reference images
sorted by score in descending order. Each image is titled with its rank, ID and copy score. Notably, the ground truth is always ranked first.

Query: Q34737 Rank #1: R885304 0.6846 Rank #2: R773518 0.3583 Rank #3: R964140 0.2249 Rank #4: R959949 0.0602 GT: R941532 0.0570

Query: Q33226 Rank #1: R196636 0.0035 Rank #2: R850159 0.0023 Rank #3: R103787 0.0020 Rank #4: R564439 0.0007 GT: R158866 0.0002

Query: Q29421 Rank #1: R830729 0.3784 Rank #2: R803120 0.0087 Rank #3: R188682 0.0082 Rank #4: R692240 0.0028 GT: R692240 0.0022

Figure 10. Failure cases of matcher. In each row, the query image is placed in the first column, followed by four recalled reference images
sorted by score in descending order. Each image is labeled with its rank, ID and copy score. In these cases, the ground truth copied image
is placed last.



Query: Q34909 Rank #1: R844622 0.6916 Rank #2: R382403 0.2355 Rank #3: R406496 0.2353 Rank #4: R824208 0.2256 Rank #5: R178694 0.2241

Query: Q36144 Rank #1: R887068 0.3557 Rank #2: R804281 0.2724 Rank #3: R462641 0.2663 Rank #4: R830407 0.2594 Rank #5: R023201 0.2557

Query: Q49861 Rank #1: R068831 0.2842 Rank #2: R335924 0.2774 Rank #3: R296951 0.2561 Rank #4: R918226 0.2550 Rank #5: R671061 0.2497

Figure 11. Success cases of descriptor. In each row, the query image is placed in the first column, followed by five recalled reference
images sorted by score in descending order. Each image is titled with its rank, ID and copy score. Notably, the ground truth is always
ranked first.

Query: Q32013 Rank #1: R535597 0.2795 Rank #2: R257365 0.2706 Rank #3: R017863 0.2632 Rank #4: R488413 0.2629 GT: R860344 0.2616

Query: Q37249 Rank #1: R645657 0.2658 Rank #2: R518344 0.2578 Rank #3: R835640 0.2557 Rank #4: R284473 0.2411 GT: R399665 0.2402

Query: Q34478 Rank #1: R481232 0.2948 Rank #2: R302953 0.2916 Rank #3: R917126 0.2900 Rank #4: R143172 0.2823 GT: R143172 0.2789

Figure 12. Failure cases of descriptor. In each row, the query image is placed in the first column, followed by four recalled reference
images sorted by score in descending order. Each image is labeled with its rank, ID and copy score. In these cases, the ground truth copied
image is placed last.


	More about Evaluation Protocols
	More about Post-Processing
	Experiments on more datasets
	More about Implementation Details
	More about Model Arch
	More about Tricks
	Global Hard Negative Mining
	Local Crops Ensembling

	More about Candidates List for Matcher
	Solutions of DISC21 Phase 2

	More about Reverse Operation of Table
	More about ResNet experiments
	More Visualization

	Potential Limitations


