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A. Supplemental Material

A.1. Overview

In this supplementary material, we provide the following
content:
• Details of motivation for unifying the two cascade stage

processes
• Details of dataset construction
• More qualitative comparison results
• More generalization evaluation Results
• More downstream tasks Performance
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Figure 1. Rectification and rectangling represent two extreme TPS
deformation fields. The optimal solution lies in a balanced inter-
mediate state between these extremes.
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A.2. Details of Motivation for Unifying the Two
Cascade Stage Processes

Traditional two-stage pipelines for wide-angle distortion
correction (e.g., rectification followed by rectangling)
mainly face three critical challenges:
1) Error Accumulation On one hand, independent pro-
cessing propagates residual distortions from rectification
to rectangling. For instance, inaccurate radial parameters
in rectification lead to amplified warping artifacts during
boundary alignment. On the other hand, cascaded methods
exhibit a higher risk of pixel displacement error compared
to unified approaches, which can cause blurred results.
2) Misaligned Optimization Objectives There is a conflict
that rectification prioritizes geometric fidelity (minimizing
central distortion) while rectangling emphasizes boundary
regularity (maximizing peripheral deformation).
3) Ambiguous Physical Constraints Rectification meth-
ods (e.g., physics-based regression [9, 11, 14]) struggle with
nonlinear relationships between image content and lens pa-
rameters. Rectangling methods (e.g., warping [6, 10, 12])
ignore lens physics, leading to content distortion.
To address the aforementioned challenges, we propose
ConBo-Net to unify rectification and rectangling into a
single optimization framework through Thin-Plate Spline
(TPS) morphing. Our key insight stems from the obser-
vation that both tasks can be reparameterized as dual TPS
transformations, whose interpolation inherently balances
geometric fidelity and boundary regularity.
As illustrated in Fig. 1, rectification and rectangling cor-
respond to two extreme TPS deformation fields: the rec-
tification mesh preserves geometric fidelity by minimizing
distortion near the image center. In contrast, the rectangling
mesh enforces boundary regularity by deforming peripheral
regions to align with a rectangular boundary. Intuitively, the
optimal solution should reside in a continuous intermediate
state between these extremes, balancing content preserva-
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tion and boundary alignment. To achieve this, we propose a
structural-aware morphing framework that dynamically bal-
ances geometric fidelity and boundary alignment through
learnable spatial priors:

Sfinal = α(x)Srec︸ ︷︷ ︸
Geometry

+(1− α(x))Srect︸ ︷︷ ︸
Boundary

, (1)

where α(x) is a spatially varying weight map learned from
both image content and distortion priors, and S represents
the specific task space. Theoretical analysis (see Sec 3.4
in the main manuscript) demonstrates that this unification
is mathematically equivalent to jointly optimizing rectifi-
cation and rectangling under shared physical constraints.
Specifically, joint parameterization eliminates cascaded er-
ror propagation, while the inherent smoothness of the TPS
energy function harmonizes conflicts between geometric fi-
delity and boundary regularity.

This framework systematically addresses the three chal-
lenges of traditional cascaded pipelines. First, coupling rec-
tification and rectangling into a single differentiable opera-
tion enables end-to-end error correction. Second, injecting
lens-specific priors (e.g., ordinal geometry constraints) into
TPS constraints ensures physical plausibility. Our experi-
ments outperform state-of-the-art two-stage solutions, en-
hancing PSNR by at least 0.6 dB.

A.3. Details of the Dataset Construction
We construct a rectangling-distortion& corresponding
meshes dataset, and we would like to release it to promote
the research development. To be specific, our dataset is built
using the following four steps:
(i) Wide-angle image synthesis. To synthesize wide-
angle images, we followed the existing distortion rectifica-
tion hypothesis and used the polynomial distorted camera
model[4, 7, 9, 13, 14] and synthesized the wide-angle im-
ages. To be specific, in an image coordinate system, the Eu-
clidean distance between an arbitrary point Pu(x, y) and the
image center P0(x0, y0) on the perspective image is repre-
sented as ru. In the fisheye image, the corresponding point
Pd(xd, yd) has an Euclidean distance rd from the distortion
center. We used a 4th-order polynomial model to describe
the relationship between the perspective image and the fish-
eye image. This model is based on the equation:

θu =

n∑
i=1

kiθ
2i−1
d , n = 1, 2, 3, 4, . . . (2)

Where θu represents the angle of incident light and θd is the
angle that light passes through the lens. The relationship
between ru and rd can be expressed as:

ru = f

n∑
i=1

kir
2i−1
d , n = 1, 2, 3, 4, . . . (3)

Where f is the focal length of the fisheye camera. By merg-
ing the distortion parameters ki and the focal length f , we
obtained the final polynomial model:

ru =

n∑
i=1

kir
2i−1
d , n = 1, 2, 3, 4, . . . (4)

ki denotes the distortion parameter, to be specific, we
set the parameters range the same with PCN[13], which
is randomly generated from the following ranges: k1 ∈
[1 × 10−6, 1 × 10−4], k2 ∈ [1 × 10−11, 1 × 10−9], k3 ∈
[1× 10−16, 1× 10−14], k4 ∈ [1× 10−21, 1× 10−19].
(ii) Rectangling image find and selection. We noticed
that there is classical panoramic image rectangling work[2],
which makes the stitched image regular. It makes the
stitched image regular by optimizing an energy function
with line-preserving mesh deformation. Thus, we per-
form the same energy function on the rectified image to
gain the rectangling images. We followed the same set-
ting as RecRecNet[8], and there are 5160 pairs of rectified-
rectangling images for the training process and 500 pairs for
testing. The size of all images is 256×256.
(iii) Rectification and Rectangling Meshes Generation.
RecRecNet[8] is a rectangling network for wide-angle im-
age correction. It uses the TPS module to build nonlinear
and non-rigid transformations, learning control points on
the corrected image to warp the source structure to the tar-
get domain. We trained two RecRecNets, one for extracting
the mesh of rectangling and the other for rectification.
(iv) Generalization Evaluation dataset. In addition to the
synthesized dataset, we collect rectified wide-angle image
results from the state-of-the-art rectification methods. Their
results are derived from other types of datasets and real-
world wide-angle lenses such as the Rokinon 8mm Cine
Lens, Opteka 6.5mm Lens, and GoPro.

A.4. More Qualitative Comparison Results
As shown in Fig. 2, our ConBo-Net achieves simultaneous
distortion rectification and boundary rectangling across di-
verse wide-angle scenes. The results preserve structural
integrity (undistorted linear features) while maintaining
strict rectangular boundaries, demonstrating a geometri-
cally consistent representation. By contrast, previous two-
stage methods struggle to reconcile these objectives: (i)
Content degradation (e.g., blurred textures in DR-GAN
[7] and distorted shapes in RecRecNet [8]) arises from error
accumulation during sequential rectification; (ii) Bound-
ary irregularity (e.g., black borders in SimFIR [1] and
non-rectangular outputs in RecRecNet [8]) stems from mis-
aligned optimization between stages.
These artifacts originate from cascaded pipelines where in-
dependent rectification and rectangling lack error feedback,
propagating geometric inconsistencies irreversibly. For in-
stance, SimFIR’s black pixel edges directly result from
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Figure 2. More qualitative results compared to two-stage approaches. Results demonstrate the superior effectiveness of our approach in
correcting wide-angle distortions across diverse scenes. Examples include surfing scenarios, urban streets, vehicle photography, and close-
up keyboard imagery. Compared to two-stage approaches, our method consistently produces results closest to the ground truth, particularly
in preserving linear structures (e.g., buildings and keyboards) and mitigating curvature artifacts in dynamic scenes (e.g., moving vehicles
and ocean waves).
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Figure 3. More results on the real-world photos from different lenses.

residual distortion left by its rectification stage, which the
subsequent rectangling module cannot resolve without in-
troducing content warping.

A.5. More Generalization Evaluation Results

As detailed in the main text, we test our method on dis-
torted images captured by diverse real-world wide-angle
lenses, including the GoPro Hero 10, Opteka 6.5mm Fish-



Ours

DR-GAN+
RecRecNet

DeepCalib+
RecRecNet

SimFIR+HE ODE+RecRecNetOurs

Figure 4. ConBo-Net enhances downstream vision perception
tasks, such as image segmentation, as demonstrated in[5]. The
arrows indicate instances where the two-stage approach fails to
produce accurate results.

eye, and SAMSUNG 10mm F3.5. As shown in Fig. 3, our
approach robustly generalizes to complex outdoor scenes
(e.g., urban landscapes and natural environments) under
varying distortion patterns while preserving rectangular im-
age boundaries critical for perspective coherence. For in-
stance, architectural structures (e.g., building facades), lin-
ear objects (e.g., streetlights), and roads are accurately re-
stored to their intrinsic straight geometries, eliminating cur-
vature artifacts. This results in processed images with sig-
nificantly improved geometric fidelity, closely resembling
undistorted real-world perspectives.

A.6. Downstream Tasks Performance
To evaluate the practical impact of our method on down-
stream vision tasks, we combine ConBo-Net with the Seg-
ment Anything Model (SAM) [5] for image segmentation
and You Only Look Once (YOLO) [3] for object detec-
tion. Comparative experiments show that our method sig-
nificantly improves segmentation and detection accuracy,
especially in capturing fine structural details like thin edges
and occlusion boundaries.
As illustrated in Fig. 4, in the segmentation task, the two-
stage pipeline (DR-GAN [7] → RecRecNet [8]) exhibits
critical limitations—highlighted by red arrows—including
fragmented segmentation in high-curvature regions and
blurred boundaries around deformable objects. For exam-
ple, the two-stage method erroneously merges the back-
rest of the chair with the background. In contrast, our
method achieves crisper segmentation coherence through
distortion-aware feature adaptation. As shown in Fig. 5,
ConBo-Net shows higher detection rates than other two-
stage methods, such as DR-GAN+RecRecNet, PCN+HE,
SimFIR+HE, and ODE+RecRecNet in YOLO evaluation.
In the pizza detection example, ConBo-Net achieves higher
confidence scores (0.80 and 0.72) than other methods, indi-
cating more accurate identification of pizza objects. Sim-
ilarly, in train detection, ConBo-Net attains a confidence
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Figure 5. We compared ConBo-Net with other two-stage pipelines
in terms of object detection performance. ConBo-Net achieves
higher confidence scores in detecting objects like pizza and trains,
showing its better detection performance.

score of 0.49, outperforming other approaches. ConBo-Net
enhances image quality, which contributes to better object
detection performance.
These results underscore our method’s dual strength: it not
only mitigates distortion-induced segmentation errors but
also captures semantically critical regions (e.g., functional
object parts) that cascaded approaches often miss. By main-
taining geometric fidelity and structural integrity, our ap-
proach significantly improves the interpretability and utility
of segmentation outputs across diverse real-world scenar-
ios.
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