
Beyond the Frame: Generating 360◦ Panoramic Videos from Perspective Videos

Supplementary Material

1. Supplementary Material Overview
In this supplementary material, we provide additional dataset
and implementation details. Accompanying this supplemen-
tary file is our project page. Following the submission guide-
line, the project page is also accessible by opening the ’in-
dex.html’ file in the supplementary material.

2. Dataset Collection and Statistics
In this section, we introduce a scalable data curation strategy
for training a video-to-360◦ diffusion model. Then we show
examples from our dataset and introduce its statistics to
provide a rough understanding of our dataset.

2.1. Data Processing
We begin with the 360-1M dataset [13], which includes
approximately 1 million 360◦ videos of varying quality.
To establish a quality baseline, we retain only videos with
more than 50 likes. Despite this initial filtering, the dataset
still contains mislabeled 180◦ videos, standard perspective
videos, static posters, static scenes, and unrealistic anima-
tions. To address this, we developed a scalable data process-
ing pipeline:
1. Format Filtering. We sample frames from each video

and detect horizontal lines in the center or vertical lines at
the boundaries to verify the equirectangular format. Hor-
izontal line detection removes up-down formatted 360◦

videos, while vertical line detection filters out perspective
videos and posters.

2. Intra-frame Filtering. We compute LPIPS between the
left and right halves to filter 180◦ videos and between the
top and bottom halves to filter improperly formatted 360◦

videos.
3. Inter-frame Filtering. To ensure scene dynamics, we

sample frames at random intervals and calculate the pixel
variance. Static videos with minimal inter-frame variation
are removed.
After coarse filtering, the videos are split into 10-second

clips. We then apply fine-grained filtering using optical
flow [5] to detect low-motion clips, TransNetv2 [11] to iden-
tify cuts, and DPText-DETR [16] to detect texts from un-
wrapped perspective views. Clips with excessive black pixels
or low pixel variance are also excluded, as they indicate low
visual complexity.

2.2. Dataset Statistics
The final dataset consists of 283,863 ten-second clips, dis-
tributed across 14 subject categories. The most prominent

Figure 1. Clip category distribution in our dataset.

category, “Travel and Events,” accounts for 63,935 clips.
From this dataset, we also build a high-quality selected after
manual inspection of the video frames. This subset was used
for high-quality fine-tuning. The distribution of categories
in the dataset is shown in Figure 1, with examples of filtered
and included clips in Figures 2 and 3.

3. Implementation Details and Analyses
3.1. Perspective to Equirectangular Projection
We detail the mathematical process of mapping perspective
video pixels to equirectangular maps. This includes equa-
tions for coordinate normalization, rotation, and spherical
mapping.

To map a pixel coordinate (u, v) from an image with a
given field of view, roll, pitch, and yaw to an equirectan-
gular map, we first normalize the pixel coordinates to the
normalized device coordinates (NDC). Assuming an image
resolution of (W,H), the NDC coordinates (xndc, yndc) are
given by

xndc =
2u

W
− 1, yndc =

2v

H
− 1. (1)

Given horizontal and vertical FOVs α and β, we compute a
3D direction vector (X,Y, Z) for the pixel in the camera’s
coordinate frame as follows:

X = xndc · tan
(α
2

)
, Y = yndc · tan

(
β

2

)
, Z = −1.

(2)
To reorient this vector from the camera frame to the equirect-
angular frame, we apply a series of rotations defined by
the roll r, pitch p, and yaw y angles. Each angle defines a
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rotation matrix: Rr for roll,

Rr =

1 0 0
0 cos(r) − sin(r)
0 sin(r) cos(r)

 , (3)

Rp for pitch,

Rp =

 cos(p) 0 sin(p)
0 1 0

− sin(p) 0 cos(p)

 , (4)

and Ry for yaw,

Ry =

cos(y) − sin(y) 0
sin(y) cos(y) 0

0 0 1

 . (5)

The rotated vector (X ′, Y ′, Z ′) is obtained by applying these
transformations in the order Ry ·Rp ·Rr:X ′

Y ′

Z ′

 = Ry ·Rp ·Rr ·

XY
Z

 . (6)

We then convert (X ′, Y ′, Z ′) to spherical coordinates, where
θ = arctan 2(Y ′, X ′) and ϕ = arcsin

(
Z′

√
X′2+Y ′2+Z′2

)
.

Finally, the spherical coordinates are mapped to equirect-
angular pixel coordinates (ueq, veq) for an equirectangular
map of dimensions (Weq, Heq) by

ueq =
Weq

2π
· (θ + π), veq =

Heq

π
·
(π
2
− ϕ

)
. (7)

This yields the pixel location on the equirectangular map
corresponding to the input pixel in the original image.

3.2. Training Details
Our model is initialized from the Stable Video Diffusion-
I2V-XL model [1]. We implement a two-phase training strat-
egy: initially at 384 × 768 resolution for 100K iterations,
where we sample the noise scheduler parameter σ from a
log-Gaussian distribution (log σ ∼ N (Pmean, P

2
std)) and pro-

gressively increase the noise schedule from (Pmean, P
2
std) =

(−1, 1) to (0, 1). In the second phase, we finetune the model
at higher 512 × 1024 resolution on a high-quality subset
for 20K iterations, employing context-aware training with
a stronger noise schedule of (Pmean, Pstd) = (1, 1) as rec-
ommended by [3]. We set the sequence length T = 25 and
context length S = 5. For both phases, we use the AdamW
optimizer with a learning rate of 10−5 and a batch size of 16.
The training required approximately six days on 8 A6000
GPUs for the first phase and four days on 8 A100 GPUs for
the second phase.

Figure 2. Examples of videos discarded during data the data
filtering pipeline. We discard 180◦ videos, standard perspective
videos, static posters, static scenes, and unrealistic animations from
the initial noisy dataset.

3.3. Inference Details on In-the-Wild Videos
For in-the-wild input videos, we first employ MegaSaM [8]
to estimate the camera intrinsics and poses, followed by
generating the corresponding masked equirectangular video
used to condition the network. After generation, we apply
video super-resolution model [6] enhanced by our proposed
blended decoding to increase the spatial resolution of the
generated video by a factor of 2. Note that we do not apply
super resolution modules in ablation studies and comparison
with baseline methods.

3.4. Metrics
We evaluate our results based on three key criteria: image
quality, temporal coherency, and geometric consistency. For
image quality, we use PSNR, LPIPS [17], Imaging Qual-
ity, and Aesthetic Quality metrics from VBench [7]. For
temporal coherency, we employ FVD [12] and the Motion
Smoothness [7]. For geometric consistency, we introduce
a line consistency metric to evaluate whether straight lines
remain straight within extrapolated views. This metric is
particularly important for assessing whether our model pre-
serves fundamental geometric properties when generating
novel views. To quantitatively measure this consistency, we
follow [9] and use EA-score [18] to evaluate the angular and
Euclidean distances between line pairs.

Specifically, FVD is calculated on the full 360◦ scene
to evaluate overall distribution, while VBench metrics are



Figure 3. Video frames sampled from our dataset. We arrange the video frames to from a 360◦ image.

applied to four square 2D projections (front, back, left, right)
extracted from the 360◦ video, as VBench is designed for per-
spective videos. PSNR and LPIPS are computed only within
masked regions of visible directions and aggregated across
frames, since other directions are extrapolated. Though this
visible region remains under-constrained (visible areas at
timestamp 0 may not appear at timestamp T ), this approach
provides more accurate evaluation than existing video out-
painting methods [2, 4, 14] that calculate scores over the
entire generated video.

Line Consistency. We introduce a line consistency metric
to evaluate geometric fidelity across extrapolated viewpoints.
This metric assesses whether straight lines in the original
perspective remain consistent in neighboring views. Our
approach uses real-world perspective videos that contain
prominent linear structures, such as lanes and sidewalks.

Specifically, we first annotate lines in input views, then
detect corresponding lines in neighboring views unwrapped
from generated 360° videos using the Hough transform.
Then, we compute the analytical solution of ground truth
lines in neighboring views using homography and employ
bipartite matching to pair these with detected lines. Finally,
we follow [9] and report the EA-score [18], a score in [0, 1]
to measure the angle and euclidean distance between two
lines, between the matched ground truth and detected lines.
An example of our dataset and the line detection result in
shown in Fig. 4.

Input view 
with annotated lines

Neighboring view 
with detected lines

Figure 4. Illustration of our line detection metric. Given input
view with annotated linear structures, we detect their extension in
the neighboring views and measure their consistency.

3.5. Baseline Implementation Details

PanoDiffusion [15]. We reproduced this model due to the
unavailability of their training code. We finetuned the image
inpainting model [10] on the video frames of our dataset,
omitting the depth branch due to the lack of depth informa-
tion in the dataset. The model was trained for 50K iterations
using the AdamW optimizer with a learning rate of 10−5

and a batch size of 128, running on 8 NVIDIA A6000 GPUs.
Be-Your-Outpainter [14] and Follow-Your-Canvas [2].
Video outpainting methods support only rectangular inputs,
so we centered square videos on the canvas and expanded
the vertical field of view to 180◦ and horizontal field of view
360◦. For evaluation, we extracted three perspective videos
from each 360◦ test video with FoVs of 60◦, 90◦, and 120◦.
Because these models require per-video optimization for
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Figure 5. Comparison with perspective video generation models. Preserving shape consistency and dynamic plausibility remains an
open challenge for video generation models. Specifically, our base model, SVD, exhibits noticeable appearance changes in the generated
video (first row), while even state-of-the-art video models such as COSMOS demonstrate physical artifacts, where the black car on the back
disappears (middle row).

each generation, they are very compute expensive, taking
about 14 and 11 minutes, respectively, on a single NVIDIA
A6000 GPU for each generation. In contrast, our method
does not introduce additional compute overhead upon SVD,
taking around 90 seconds for each generation while achiev-
ing significantly better quality.
Limitations. Due to computational resource constraints, our
current output resolution (512 × 1024) is lower than that
of typical 4K real-world panoramas. The resolution further
decreases when unwrapping back to perspective views. Ad-
ditionally, while our model substantially improves upon the
base SVD model in terms of object dynamics and temporal
consistency, it still exhibits shape inconsistencies and physics
artifacts, similar to SVD and other SoTA video models such
as COSMOS, as shown in Figure 5.

4. Additional Qualitative Results

Additional comparison, application, and in-the-wild video
generation results are available in our project page.
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