CoHD: A Counting-Aware Hierarchical Decoding Framework
for Generalized Referring Expression Segmentation

Supplementary Material

1. Additional Details on Experiment Setup

1.1. Datasets

gRefCOCO. It contains 278,232 expressions, which in-
cludes 80,022 multiple-target referents and 32,202 empty-
target ones. There are 60,287 distinct instances being re-
ferred in 19,994 images. The images are split into four sub-
sets: training, validation, test-A, and test-B following the
same UNC partition of RefCOCO [6].

Ref-ZOM. Ref-ZOM are selected from COCO
dataset [9], which consists of 55,078 images and 74,942
annotated objects. 43,749 images and 58,356 objects are
utilized in training, and 11,329 images and 16,586 objects
are employed in testing. It is annotated with three different
settings, i.e., one-to-zero, one-to-one, one-to-many, each of
which corresponds to the empty-target, single-target, and
multiple-target in GRES respectively.

R-RefCOCO. There are three different sets in the dataset,
R-RefCOCO, R-RefCOCO+, R-RefCOCOg, and each of
which is based on the classic RES benchmark, Ref-
COCO+/g [6]. Only the validation set follows the UNC par-
tition principle and it is officially stated for evaluation. The
formulation rule of the dataset is adding negative sentences
into the training set at a 1:1 ratio relative to the positive sen-
tences.

RES. RefCOCO [6], RefCOCO+ [6], and Ref-
COCOg [13] are three standard RES benchmarks, each of
which contains 19,994, 19,992, and 26,711 images, with
50,000, 49,856, and 54,822 annotated objects and 142,209,
141,564, and 104,560 annotated expressions, respectively.

1.2. Metrics

For GRES, following [10], we measure the effectiveness
of our model by Pr@0.7, gloU, cloU and N-acc for gRe-
fCOCO. Meantime, oloU, mloU, Acc. used in [4] are
adopted for Ref-ZOM. In addition, the standard metrics
mloU, mRR, rloU are for R-RefCOCO [14]. It is impor-
tant to note that these metrics are officially specified in each
respective benchmark.

Similar to the mean IoU, the Generalized IoU (gloU)
computes the average IoU value for each image across all
instances. For the empty-target cases, the IoU values for
true positive empty-target instances are considered to be
1 whereas the IoU values for false negative instances are

deemed to be 0. cloU calculates the total intersection pixels
over the total union pixels.

mloU, oloU is adopted in Ref-ZOM [4], where mIoU is
the average IoU value for each image across all cases con-
taining referred objects. oloU is the same as cloU. As for
R-RefCOCO [14], we use the metric rloU for quantifying
the quality of robust segmentation, which takes the negative
sentences into consideration and explicitly assigns the equal
weight of the positive one in mloU calculation. Note that,
N-acc. in gRefCOCO, Acc. in Ref-ZOM are in the same
formulation where they denote the ratio of the correctly
classified empty-target expressions over all the empty-target
expressions in the dataset. Similarly, mRR in R-RefCOCO
calculates the empty-target expression recognition rate of
each image and averages these across the entire dataset.

1.3. Implementation Details

Experiment setup. Our model is implemented with de-
tectron2 [15] in Pytorch. The visual encoder is initialized
with the pre-trained weights on ImageNet [1] and the lan-
guage encoder is an officially pre-trained BERT model [2].
We set the number of Deformable attention layers as 6 fol-
lowing ReLLA [10]. There are 3 cascaded semantic decoding
modules in HSD for mask generation and query refinement.
The weight of Loss,,qsk and Losscount are set as 2 and 0.1
by default. It is worth noting that since Loss¢y;s; 18 trained
individually, which has no impact on the main framework,
we directly set its weight as 1 for all experiments.

The model is trained with AdamW optimizer with a
weight decay of 0.05. The batch size is set to 48. The
learning rate is initialed as 2e-5 and scheduled by cosine
learning rate decay by default. Following [10, 17], the input
images are resized to 480x 480 and the maximum length
of referring expressions is set as 20 for all datasets. Other
hyperparameters of the encoding process are the same as
ReL A [10]. All experiments are conducted with 8x A10
and each takes up about one day with 13GB ~ 18GB mem-
ory occupied i.e., it depends on the backbone.

Counting labels formulation. We elaborate on the for-
mulation of the counting label. All mentioned datasets ad-
here to the COCO [9] annotation format. On the one hand,
for RES datasets, each annotated expression is accompanied
by a label (category_id) corresponding to the target cate-
gory. On the other hand, a list of target categories is incor-
porated with the additional multi-target scenario for GRES
dataset. Consequently, the count of objects can be derived



Ref-ZOM Test Set

Method mloU oloU Acc.

Backbone

MLLM Methods

SAM-ViT-H | 61.46 60.14 72.58
SAM-ViT-H | 67.98 67.12 82.66
SAM-ViT-H | 6539 66.41 93.39
SAM-ViT-H | 68.13 6829 94.59

Specialist Methods

LISA-V-7B [8]
GSVA-V-7B [16]
LISA-V-7B [8] (ft)
GSVA-V-7B [16] (ft)

MCN [12] DarkNet-53 | 54.70 55.03 75.81
CMPC [5] ResNet-101 | 55.72 56.19 77.01
VLT [3] DarkNet-53 | 60.43 60.21 79.26
LAVT [17] Swin-B 64.78 64.45 83.11
DMMI [4] Swin-B 68.21 68.77 87.02
CoHD (Ours) ‘ Swin-B ‘ 69.81 68.99 93.34

Table 1. Comparison with state-of-the-art methods on the Ref-
ZOM dataset.

Amask  Acount | gloU  cloU  N-acc.  C-acc.
2 0.5 63.23 62.37 54.88 73.28
1 0.5 62.39 61.53 54.81 73.20
1 1 63.06 61.80 55.34 71.88
5 0.1 64.15 62.54 57.24 71.46
2 0.1 65.89 62.95 60.95 75.45

Table 2. Results of different ratios of loss.

from the number of categories and each classification label
is from the given category of the annotated object. It sig-
nifies that the construction of counting ground truth C9¢ is
straightforward and the additional information extraction is
unnecessary. Note that, taking the long-tail distribution of
the 80 original COCO categories into consideration where
most of the categories are annotated as 0, we instead uti-
lize the 12 super-categories to narrow down the referential
search space for providing more precise supervision.

2. Additional Experiments

2.1. Discussion on Inconsistent Performance

As shown in the manuscript, we notice that the performance
improvement is inconsistent between RES and GRES. We
believe it can be attributed to two folds: 1) Restricted ef-
Jectiveness on the generalized design: 1t is obvious that the
diversity of referring scenarios in GRES is much more plen-
tiful compared to the RES since RES only includes one-to-
one referent case. Due to the inadequate referring seman-
tics between visual and linguistic and the lack of enriched
contextual information, e.g., Spatial relationship between
instances, counting, or compound structure expressions, it
is believed that the great potential of HSD is constrained.
Moreover, the effectiveness of object counting mechanism

Supervision Type gloU IoU N-ace.

Category Count

63.15 60.67 55.84
v 64.13 62.36 56.85
v v 65.89 62.95 60.95

Table 3. Effectiveness of category and count-level supervision de-
sign of AOC.

Method Backbone TFLOPs Parameters Inference Time gloU

ReLA  Swin-T  0.066T 163M - 56.87
CoHD Swin-T  0.068 185M - 62.95

DMMI Swin-B  0.392T 341M 95.1 ms/image 62.68
ReLA Swin-B  0.131T 226M  68.1 ms/image 63.60
CoHD Swin-B  0.133T 248M  62.5 ms/image 68.42

Table 4. Performance and efficiency comparison with previous
SOTA method under different backbones.

in RES is also underestimated. In GRES, it seamlessly inte-
grates all specificities of each scenario by embodying each
case into count- and category-level supervision. In terms
of RES, the simplification of the formulation limits the po-
tential of object counting, where count number supervision
is missing. 2) Imbalance dataset scale: The samples of
GRES dataset gRefCOCO is 230,944 samples, while that
of each RES dataset is: RefCOCO: 120,624 RefCOCO+:
120,191 RefCOCOg: 80,544. That indicates the specific de-
sign and effort on hyper-parameter studies in RES weighs
more crucial. Since our main focus is on the generalized
referring which accompanies more useful real-world appli-
cations, complex hyperparameter studies on RES are not
applied.

Considering the hypothesis mentioned above, we believe
that enlarging the scale of the dataset can partly alleviate
the phenomenon. The results in the joint dataset train-
ing [7] demonstrate that our CoHD brings more improve-
ments compared with the single scenario, showing that the
potential of our generalized paradigms can be exploited
with enriched contextual information.

2.2. Performance on Ref-ZOM Dataset

We report our results on Ref-ZOM benchmark [4] in Tab. 1.
As illustrated, our method outperforms all methods under a
fair setting, e.g., +6.3% in Acc., +1.6% in mlIoU. It is worth
noting that our method is better than GSVA [16], which uti-
lizes Multi-Modal Large Model (MLLM) [11].

2.3. Additional Ablation Studies

Loss ratio. \,,.sx and A.oun: are the coefficients for
L0SSmask and LoSSount respectively. We report the abla-
tion results in Tab. 2. As observed, the appropriate settings
of A\nask and Acount help decently integrate the counting
ability into hierarchical semantic decoding.



Stacked Layer gloU cloU N-acc.

2 66.33  64.58 58.48
3 68.42  65.17 63.68
4 66.70  64.94 60.49

Table 5. Impact on different numbers of stacked layers in the Se-
mantic Decoding Module.

Method Backbone gloU cloU N-acc.

ReLA Swin-T 56.87 57.73 44.07
ReLA + AOC Swin-T 60.81 59.34 51.78

Table 6. Compatibility of AOC in previous GRES method.

Aggregation variant Linear Combination Weights CoHD
(1.0, 1.0, 1.0) (0.5,0.5,1.0) (0.5, 1.0,0.5)

gloU 63.56 64.12 63.66 65.89

cloU 62.32 62.03 61.53 62.95

Table 7. Impacts of different aggregation methods adopted for
Inter-Selection.

Stacked layer in Semantic Decoding Module. We ex-
periment with the impact on the number of stacked layers
in the semantic decoding module. As shown in Tab. 5, the
insufficient or excessive layers both lead to decreased per-
formance due to incomplete semantic context modeling or
over-exaggeration of the redundant contents.

Efficiency v.s. performance. We provide detailed com-
parisons (including model parameters and T-FLOPs.) on
the gRefCOCO val set and the results are shown in Tab. 4.
It can be seen that our CoHD-B outperforms previous SOTA
methods ReLA-B by 4.8% gloU and 2.7% cloU with slight
parameters increased, i.e., 22M, and even no T-FLOPs costs
but faster inference speed. It is worth noting that the perfor-
mance of CoHD-T is even better than ReLA-B with fewer
parameters. In addition, the number of parameters con-
sumed by HSD is 14.7% of the whole model, but with sig-
nificant performance improvement.

Further discussion on AOC. We provide a further dis-
cussion on the effectiveness of AOC as follows: 1) Super-
vision type: We highlight the necessity of the AOC design
which embodies each referent scenario into explicit cate-
gory and count-level supervision in Tab. 3. As indicated,
each level of supervision facilitates the precise object per-
ception. 2) Plug-and-Play: We also verify the compatibil-
ity property of AOC, which can be integrated into the pre-
vious GRES method, ReLLA, as the plug-in-play module. It
can be seen in Tab. 6 that by replacing the misleading binary
object existence head with our advanced AOC, the segmen-
tation results can be enhanced. 3) Strong correspondence

to the referent: The transformation of a given referring ex-
pression into the specific supervision type on the semantic
query helps enhance the object-awareness by alleviating the
impact of implicit and intricate referring scenario such as
“2nd row from bottom 2nd from right”. The high C-acc.
metrics and the precise count prediction reveals that CoHD
achieves the category- and count-level understanding of the
referent, which eventually benefits the segmentation results.

Further discussion on Inter-Selection. As illustrated in
the semantic maps in Fig.3 in the manuscript, the variant of
objects in granularity may incur unsatisfied responses at a
specific level. It is anticipated that adaptively enhancing the
desired regions while suppressing the non-related ones fully
unveils the reciprocal benefit of the hierarchical nature. We
report the impacts of the variant of aggregation methods in
Tab. 7. We speculate that the performance drop potentially
stems from the bias accumulation with the fixed weight of
each granularity. It is worth noting that the Inter-selection
only includes a shared linear layer, where the computation
costs can be negligible.

3. Visualizations.

3.1. Multi-granularity Mask Aggregation Visual-
ization

As illustrated in the main paper, we hierarchically aggregate
each visual-linguistic correspondence in different granular-
ity for hierarchical semantic decoding. To further prove the
rationality of our design, we visualize the aggregated acti-
vation map (originally from the semantic map) at each level
in Fig. 1. As observed, with progressive mutual modality
complementary across granularities, the desired regions of
the referent target are fully activated with the increase of the
levels.

3.2. Additional Segmentation Comparisons

As illustrated in the main paper, CoHD can better handle the
extreme challenges of GRES under multiple/single/empty
target scenarios compared with the previous SOTA method
ReLA [10]. Here, we incorporate more cases in Fig. 3 to
demonstrate our superiority in modeling the intricate refer-
ring association between visual and linguistic.

3.3. Segmentation Results of CoHD

Fig. 2 demonstrates the effectiveness of CoHD in com-
plex generalized settings, e.g., complex geometrical rela-
tionships between instances, deceptive objects, compound
sentence structures, and intricate associations between re-
ferring expressions and images.



4. Limitations

Benefiting from the more compatible design, i.e., hierarchi-
cal semantic decoding paradigm and the explicit counting
ability, our method CoHD sufficiently addresses the limita-
tions of existing GRES and achieves superiority in meeting
the challenges of GRES. However, there are some potential
limitations. Since the referring sentences in GRES contain
multiple-target expressions, the truncation of the input text
into 20 may lose detailed descriptions of some of the targets.
Although we compensate it with sentence-level textual fea-
tures, it still remains unsatisfactory in terms of the incom-
pleteness of fine-grained target description. We believe that
how to fully utilize the textual expression in GRES is an
interesting future direction.
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Figure 1. Visualization in Multi-granularity Mask Aggregation. (a) and (c) indicate the input image and corresponding segmentation
result of our CoHD, respectively. (b) illustrates the aggregated activation map at each granularity.



No Target

"guy flopping around on "Two individuals
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the right” and a flying disc.

"player in white on left"

"the television and a "right bed"
lady wearing black top"”
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"the z’og by the mans "Woadn bench mile "black and white
feet and dog right" and light brown dog" dog under the bed"

No Target

"bottom donut "donut on top and left — "all rings of sweetness"  "donut on toilet right of

right side of plate" bottom donut" plate the one underneath”

Figure 2. Segmentation results of CoHD in generalized settings. (a) denotes the input image, and (b) showcases the segmentation results
of CoHD under multiple/single/non-target situations with different referring expressions.



No Target ] B \ No Target

Empty Target Cases

No Target

“left orange in very front” “case with a 50on it in front”

Single Target Cases

“second guy from right and guy in gray sweatshirt
to far left standing up”’

“the guy wearing black hat and black coat standing in the “tall guy gray suit far right and lady with blue shirt facing away”
rightmost side and the blue umbrella in the left side”

Multiple Target Cases

B - A

“pot with spoon in it and bowl of rice second bowl back on the right”

“the white monitor on the left side of the table “the second umbrella right and left umbrella”
and the brown cat laying on the table”

Figure 3. Segmentation results comparison in the generalized setting. (a) denotes the input image, (b) and (c) are segmentation results
of ReL A and CoHD, respectively. Empty, Single, and Multiple target referent situations with different referring expressions are in top-to-
bottom accordance.
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