
DICE: Staleness-Centric Optimizations for Parallel Diffusion MoE Inference

Supplementary Material

7. More Preliminaries
7.1. Mixture-of-Experts.
Figure 11 shows the architecture of MoE model. The router
directs each token to a subset of experts based on router
scores, while a shared expert captures common representa-
tions. Outputs from the activated experts are then combined
to form the final output. This design allows sublinear scal-
ing by selectively activating only a few experts per input.

Figure 11. Illustration of an MoE model[7] with one shared ex-
perts and two non-shared experts.

7.2. Displaced Parallelism.
Displaced parallelism [22] overlaps communication and
computation by asynchronously transmitting activations
computed in the current step for use in the next step (Al-
gorithm 2). this prevents blocking (Algorithm 1). As
shown in Figure 12, each device sends activations without
waiting, continuing computation with slightly outdated ac-
tivations from the previous step. This approach prevents
communication-induced blocking but introduces staleness,
as computations rely on slightly outdated activations rather
than fresh data.

Figure 12. Illustration of displaced parallelism in DiT across mul-
tiple devices, with dashed arrows representing asynchronous com-
munication steps that defer data exchange until the next computa-
tion stage.

8. Alternative Staggered Batch Solution
Many works split batches to better overlap communication
and computation [11, 20]. We initially explored a staggered
batch solution, in which each device divides its local batch

Algorithm 1: Expert Parallelism

1 for each layer do
// Perform attention

2 x← attn(x)
3 [s, idx]← router(x) // Compute router

scores and assign tokens to
experts

4 xd ← all2all dispatch(x, idx)
// Synchronous dispatch
(blocking)

5 xe ← expert(xd) // Process tokens
with local experts

6 xc ← all2all combine(xe) // Synchronous
combine (blocking)

7 x← scale(xc, s) // Scale outputs
using router scores

Algorithm 2: Displaced Expert Parallelism

1 for each layer do
2 x← attn(x)
3 [s, idx]← router(x)
4 hd ← async dispatch(x, idx) // Launch

non-blocking dispatch
(returns handle hd)

5 xd ← wait(hprev
d) // Wait for

previous step’s dispatch
result

6 xe ← expert(xd) // Process outdated
tokens with local experts

7 hc ← async combine(xe) // Launch
non-blocking combine (returns
handle hc)

8 xc ← wait(hprev
c) // Wait for

previous step’s combine
result

9 x← scale(xc, s)

into multiple sub-batches and processes them in a staggered
manner. As shown in Figure 13, this approach can reduce
staleness by handling multiple sub-batches.

However, we ultimately do not adopt this solution for
three main reasons:
• Reduced GPU Utilization. Splitting the batch lowers the

effective batch size per device, potentially underutilizing
GPU resources and degrading throughput.

Figure 13. Illustration to the staggered batch solution, where local batches are split and interleaved to reduce staleness. However, this
approach requires additional buffers, doubles memory usage, and reduces GPU utilization due to smaller effective batch sizes.

• Increased Memory Requirement. Unlike interweaved
parallelism—which requires a persistent buffer only for
combine and a temporary one for dispatch—the staggered
batch solution must maintain persistent buffers for both
dispatch and combine, effectively doubling memory us-
age and increasing the risk of out-of-memory.

• Batch Size Limitations. This solution requires a local
batch size greater than one, which is not feasible when
processing a single large image or in scenarios with lim-
ited batch capacity.
For these reasons, we prioritize the interweaved paral-

lelism approach described earlier, which retains the benefits
of asynchronous scheduling while requiring fewer buffers
and achieving higher GPU utilization.

Model GPUs Batch Size

4 8 16 32

DiT-MoE-XL 4 62.9% 70.9% 73.8% 74.4%
8 75.6% 78.1% 79.0% 79.2%

DiT-MoE-G 4 50.7% 56.8% 59.3% 61.1%
8 64.7% 67.8% 69.2% 68.9%

Table 5. All-to-All communication time percentage in syn-
chronous expert parallelism.

9. More Implementation Details
Setup. The models used in our study are the publicly avail-
able versions of DiT-MoE from Huggingface. In our ex-
perimental results, the batch size refers to the local batch
size, representing the number of samples processed per de-
vice. All asynchronous methods apply the same number of
synchronized steps(e.g. warmup) post-start.
Expert Score Scaling. There are two approaches for scal-

ing results after expert processing: (1) using the latest router
scores computed in the current step, which provides fresher
scores, and (2) using the router scores corresponding to the
stale expert input, offering better alignment with the activa-
tions used. The selection of the scores has little impact on
performance. For fairness, both displaced parallelism and
DICE use the stale router scores for scaling.
Extending Image Sizes. The public DiT-MoE model sup-
ports relatively low resolution image dimensions. To extend
our experiments to larger images, we initialize positional
embeddings for other sizes. Although this adjustment pre-
vents the model from generating meaningful images, it en-
ables us to evaluate latency, memory usage, and speedup
across different resolutions.
Interweaved Parallelism restructures the execution flow,
effectively “folding” it. It processes expert computations
within the same step while maintaining asynchronous com-
munication, as outlined in Algorithm 3.
Conditional Communication For each token-expert pair
(i, e) at step t, conditional communication dynamically de-
cides whether to send fresh activations or reuse cached re-
sults. As shown in Algorithm 4, the top-1 expert for each
token always receives fresh data, ensuring critical tokens
remain up-to-date. Lower-priority experts (i.e., those not
ranked top-1) reuse their previous activations most of the
time and only receive an update every n steps. This design
leverages the weighted-sum mechanic of MoE to maintain
high-impact tokens’ freshness while reducing communica-
tion overhead for less critical tokens.

10. Discussion
Limitations. Although DICE demonstrates significant
gains in inference efficiency, there remain avenues for fur-
ther improvements. Optimized kernels and more efficient
NCCL operations could help further reduce latency. Addi-

Algorithm 3: Interweaved Parallelism

1 for each layer do
2 x← attn(x)
3 [s, idx]← router(x)
4 hd ← async dispatch(x, idx) // Launch

non-blocking dispatch for
current layer

5 prev layer xd ← wait(prev layer hd) // Wait
for previous layer’s dispatch
result from current step

6 prev layer xe ←
prev layer expert(prev layer xd)
// Process tokens using
previous layer’s experts

7 prev layer hc ← async combine(prev layer xe)
// Launch non-blocking
combine for previous layer’s
outputs

8 xc ← wait(hprev
c) // Wait for previous

step’s combine result for
current layer

9 x← scale(xc, s) // Scale outputs
using router scores

Algorithm 4: Conditional Communication

1 for token-expert pair (i, e) at step t do
2 if e is top-1 expert then
3 Transmit Token ; // Always fresh

4 else
5 if t mod n ̸= 0 then
6 Reuse stale he

i ;
7 else
8 Transmit Token;

; // Update every n steps

tionally, integrating DICE with existing expert parallelism
optimizations offers opportunities to enhance its efficiency
and scalability. Another limitation lies in the availability
of MoE-based diffusion models, which restricts our evalua-
tions to a limited set of configurations. As more MoE-based
diffusion models are developed, DICE can be validated and
refined across a broader range of scenarios.
Influence of Shared Experts. The architecture of DiT-
MoE includes shared experts, a proven mechanism for en-
hancing MoE performance. We hypothesize that these
shared experts may help mitigate the impact of staleness in
similarity-based asynchronous parallelism. Unlike routed
experts, whose outputs can become stale, the shared ex-
pert’s computations are always up-to-date (as they are du-

plicated across devices), potentially providing fresh infor-
mation to balance the delayed outputs from routed experts.
This characteristic might play a role in the performance of
DICE, particularly when compared to DistriFusion. While
both approaches exhibit a staleness of 1, DICE confines
staleness to routed experts while benefiting from the shared
expert’s fresh contributions. This suggests a possible ad-
vantage for DICE in MoE-based models.
Applicability to NVLink. While our experiments are con-
ducted on PCIe-connected GPUs, DICE remains appli-
cable when MoE models are served under NVLink and
InfiniBand-based multi-node deployments [44]. In such set-
tings, all-to-all communication can contribute up to 76% of
total inference latency [44], suggesting that DICE might of-
fer even greater benefits in these environments.
Integration with Existing Expert Parallelism Optimiza-
tions. Existing expert parallelism optimizations—such as
expert shadowing [11], topology-aware routing [11, 21],
and affinity-based methods [44]—address orthogonal chal-
lenges; respectively: load balancing, network topology, and
expert placement. These techniques are potentially inte-
grable with DICE rather than alternatives, and combining
them could further enhance overall efficiency.
Usage of Router Similarity. Routers assign token destina-
tions during all-to-all communication, and their inherent re-
dundancy is crucial to maintain consistent token-to-expert
assignments. Without this similarity, asynchronous (dis-
placed) operations would disrupt token-expert assignments
and degrade performance.

11. Additional Experiments
All-to-All Blocking Latency in Expert Parallelism. We
measure all-to-all latency on the same hardware as Sec-
tion 5. Table 5 reveals a significant bottleneck inherent
in synchronous Expert Parallelism for DiT-MoE models:
the all-to-all communication overhead. The experimental
data indicates that, across all tested configurations, all-to-all
communication time significantly surpasses half of the total
inference time. Furthermore, a pronounced upward trend
is observed in this percentage as the batch size increases,
reaching a strikingly high 79.2%. This underscores the ne-
cessity of our proposed approach to mitigate this communi-
cation bottleneck and achieve substantial inference acceler-
ation.
Quality results. In Figure 14, we present additional quali-
tative results across six different classes. Notably, only the
displaced expert parallelism without extra synchronization
demonstrates considerable deviations. In particular, the im-
ages produced by DICE closely resemble the synced ver-
sion.

FID=5.31 (cfg=1.5)
Example (cfg=7) :

FID=7.79 (cfg=1.5)
Example (cfg=7) :

FID=8.27 (cfg=1.5)
Example (cfg=7) :

FID=6.11 (cfg=1.5)
Example (cfg=7) :

Class Label: Great Grey Owl

Expert Parallelism DistriFusion Displaced Expert Parallelism DICE (ours)
w/o Extra Sync

FID=11.75 (cfg=1.5)
Example (cfg=7) :

w/o Extra Sync
FID=6.48 (cfg=1.5)
Example (cfg=7) :

Class Label: Arctic Wolf

Class Label: Redshank

Class Label: Koala

Class Label: Bison

Class Label: Gaint Panda

Figure 14. Extra qualitative results.

	More Preliminaries
	Mixture-of-Experts.
	Displaced Parallelism.

	Alternative Staggered Batch Solution
	More Implementation Details
	Discussion
	Additional Experiments

