Decoupled Multi-Predictor Optimization for Inference-Efficient Model Tuning

Supplementary Material

In the supplementary material, we conduct more experi-
ments to further investigate the effectiveness of our DMPO.
Specifically, we first provide a detailed explanation of the
experiments shown in Fig. 4a and Fig. 4b, and conduct the
same experiments on five FGVC datasets. Subsequently, we
evaluate the generalization ability of DMPO using different
fine-tuning modules. Additionally, we perform experiments
on a larger dataset (i.e., ImageNet-1K [6]). Next, we con-
duct ablation studies on various components of DMPO and
present an analysis of the DMPO training process and over-
head. Finally, we visualize the classified images at different
stages.

S1. Decoupling Challenge in Early Stages

To investigate why early exiting networks cannot maintain
the same high performance in both early and deep stages si-
multaneously, we design an experiment on CIFAR-100 [20]
dataset to calculate the cosine similarity between two vari-
ants of Dyn-Adapter [47] and Original ViT. In this experi-
ment, to better investigate the influence of early stages on
deep stages, both Dyn-Adapter and its variant are config-
ured with S' = 2 stages, each consisting of L = 6 blocks.

As shown in Fig. 4a and Fig. 4b, Dyn-Adapter adopts
the loss weight allocation strategy proposed in [47], with
the output feature of Stage 1 denoted as Xpy,. The output
feature of Original ViT in the 6-th block is denoted as Xy,
and we consider Xoy to be the low-level representative fea-
ture required by deeper stage. Dyn-R indicates that based
on Dyn-Adapter, the variation in Xpy, is restricted using
I Xori — Xbyn||2, resulting in a new feature representation,
XR. By calculating the cosine similarity of (Xoxi, Xpyn) and
(Xori, XRr), we obtain the results shown in Fig. 4a. As illus-
trated in Fig. 4b, “Stage 1” indicates that all samples exit at
Stage 1, whereas “Stage 2” indicates that all samples exit at
Stage 2.

As training progresses, Xpyn, Which is directly involved
in classification learning, will contain more discriminative
information than X¢y;, while Xg will consistently maintain
a fundamental representation highly similar to Xq,; due to
I Xori — Xpyn||2. From Fig. 4a and Fig. 4b, the performance
of early stage declines when providing representative fea-
tures instead of discriminative features. At the same time,
the performance of deep stage shows the opposite trend.
This indicates a conflict where early stage struggles to learn
representative and discriminative features simultaneously.
In light of the preceding analysis, we introduce our DMPO
method to address this conflict. Under similar experiment
settings, as shown in Fig. 4a and Fig. 4b, the output features

of early stages in our DMPO achieve a trade-off between
fundamental and discriminative information, achieving the
best results at both Stage 1 and Stage 2.

To thoroughly validate the unresolved decoupling con-
flict in early stages, we conduct the same experiments on
five FGVC datasets. The results are presented in Fig. S1.

S2. Theoretical Analysis on Decoupled Opti-
mization

Analogous to Eq.(3) in DSN [21], total loss of a model with
multi-stage predictors F'(w) can be expressed as F(w) =
P(w)+Q(w), where P(w) denotes final classification loss,
and Q(w) indicates sum loss of all preceding predictors.
Based on Lemma 1 in DSN [21], we know F'(w) and P(w)
share the same optimal weights w*, while Q}(w) may attain
a different optimal w*. For our DMPO, we require both
w* and w™T. Therefore, our two-phase optimization obtains
the optimal solution w* (representation) for F'(w) at first
phase, and then optimize Q(w) to achieve w™ (discrimina-
tion) in second phase while keeping w* as much as possi-
ble, constrained by «; and o(¢;_1). The detailed theoretical
analysis will be added in revision.

S3. Performances on CNN Architecture

We experiment with the backbone of ConvNeXt-Base to
validate effect of Dyn-Adapter and our DMPO on CNN by
tuning on CUB-200-2011, where full inference with LoRA
tuning achieves a top-1 accuracy of 88.66%. As illustrated
in Tab. S1, for 70% FLOPs, DMPO clearly outperforms
Dyn-Adapter. For 30% FLOPs, DMPO significantly sur-
passes Dyn-Adapter. These results verify effectiveness of
DMPO for CNNS.

Method Accos  Accps  Accy

Dyn-Adapter 31.83  74.65 88.76
DMPO 8226 8697 88.21

Table S1. ConvNeXt-Base as backbone on CUB-200-2011.

S4. Different Fine-tuning Modules

In Sec. 4, we use LoRA [16] as the fine-tuning module. To
further validate the generalization ability of our DMPO, we
conduct experiments using other fine-tuning modules (i.e.,
Adapter [15] and Repadapter [28]). The results on VTAB-
1K are presented in Tab. S2, while those on CIFAR-100
and five FGVC datasets are shown in Tab. S3. As shown in
Tab. S2, although our DMPO exhibits a slight performance



CUB-200-2011 NABirds

Oxford Flowers

Stanford Cars Stanford Dogs

0.90 0.9
1.00 1.00
095 W \\/—_____
0.85
095 08 095
0.80 0.90
> > > > >
£ £ £ 0.0 €0y £ 090
8075 & & S 0 &
E £ 085 £ Dyn-Adapter £ T Dyn-Adapter
@ @ @ — Dyn-R 7} @ 0.85 — DynR
© 0.70 o o 085 DMPO (Ours) @ o DMPO (Ours)
£ £ £ £ o6 £
8 g 080 3 g 8
[§] o [¥] ] O 080
065 0.80
0.60 075 05 075
Dyn-Adapter Dyn-Adapter 075 Dyn-Adapter
—— DynR —— Dyn-R —— Dyn-R
0.55 DMPO (O DMPO (Ot
(Ours) 070 (Ours) 04 DMPO (Ours) 0.70
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 20 60 80 100 0 20 40 60 80 100
Epoch Epoch Epoch Epoch Epoch
CUB-200-2011 NABirds Oxford Flowers Stanford Cars Stanford Dogs
84 o 101 86 ; %0 =
Dyn-Adapter Dyn-Adapter Dyn-Adapter Dyn-Adapter
= Dyn-R = Dyn-R = Dyn-R = Dyn-R
as o DMPO (Ours) 100 DMPO (Ours) o DMPO (Ours) a5 DMPO (Ours)
% o 80
g% g% g g g
> > > > >
g o 9 o 375
g g [ g g
E 578 5 5 80 E
3 3 3 3 3
I+ I+ o S I+
< < < < <70
97
76 78
70 65
Dyn-Adapter 9%
== Dyn-R 74 76
65 DMPO (Ours) o €0
Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

Figure S1. Comparison of cosine similarities (top row) among Dyn-Adapter, Dyn-R, DMPO, and Original ViT, and classification accuracies
(bottom row) of Dyn-Adapter, Dyn-R, and DMPO at Stage 1 and Stage 2 on five FGVC datasets.
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Figure S2. Results on ImageNet-1K at varying levels of inference
FLOPs. Note that we use LoRA [16] as the fine-tuning module
and the results are obtained from training over 40 epochs.

drop compared to Dyn-Adapter when using Repadapter as
the fine-tuning module, it demonstrates better performance
at low FLOPs and maintains greater stability across varying
FLOPs. Furthermore, Tab. S3 indicates that when utilizing
more downstream data, our DMPO consistently achieves
the best performance at both low and high FLOPs.

S5. Evaluation by Utilizing ImageNet-1K as
Downstream Data

The results of Dyn-Adapter and our DMPO on ImageNet-
1K after 40 epochs of training are shown in Fig. S2.

DMPO consistently outperforms Dyn-Adapter across all in-
ference FLOPs levels. Specifically, at 30% FLOPs, DMPO
achieves an accuracy of 63.76%, significantly surpassing
Dyn-Adapter’s 48.23% by a margin of 15.53%. Overall, the
accuracy curve of Dyn-Adapter declines sharply as FLOPs
decrease, whereas DMPO demonstrates a much smoother
decline. The accuracy gap between DMPO at 30% and 70%
FLOPs is attributed to the complexity of the dataset and the
limited number of training epochs.

S6. Ablation Studies

To further validate the effectiveness of our DMPO, we
conduct ablation studies on CIFAR-100 and five FGVC
datasets. We use LoRA [16] as the fine-tuning module.

Effect of Architecture Component To further investi-
gate the impact of different components of architecture, i.e.,
bypass module and high-order statistics-based predictor, we
conduct ablation studies on both. As shown in Tab. S4, v/
indicates that the corresponding component is used, while
X indicates that it is not used. From Tab. S4, we can see
that both architecture components contribute to improving
performance.

Insertion Positions of High-order Statistics-based Pre-
dictor We further conduct experiments to evaluate the
impact of inserting high-order statistics-based predictors at
different stages. The results are presented in Tab. S5, where
v’ indicates the presence of a high-order statistics-based
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LoRA [16]
Dyn-Adapter, , [47]|167.9 90.5 70.4 99.1 89.8 86.4 53.6|86.3 95.7 84.3 75.1|81.6 67.8 50.2 82.1 79.1 47.0 31.6 39.6/0.46 11.6 75.0
DMPOg.7 (Ours) 69.2 92.5 71.3 99.4 90.9 89.4 54.3|85.1 96.2 86.0 76.0(83.6 70.2 51.3 80.9 81.7 48.0 34.6 42.8/0.87 11.6 76.2
Dyn-Adapter,, 5 [47]|66.8 90.1 69.3 99.0 89.4 84.6 53.7|81.9 95.2 84.4 75.2|72.4 64.9 44.0 77.0 63.4 38.4 28.2 33.6/0.46 5.2 72.0
DMPOg.3 (Ours) 68.6 92.4 71.2 99.4 90.2 89.4 54.3|85.0 96.2 86.1 75.2(83.2 70.2 51.0 80.8 81.6 47.6 34.8 44.1/0.87 5.2 76.0
Adapter [15]
Dyn-Adapter,, , [47]|68.3 91.1 67.6 98.9 89.5 85.7 54.3|83.0 95.8 84.6 75.8|80.4 64.8 48.5 78.5 76.0 49.4 30.0 40.0|0.28 11.6 74.2
DMPOg.7 (Ours) 68.9 92.6 70.4 99.1 90.4 88.0 54.5/84.5 96.0 85.0 76.0|81.8 65.1 48.4 79.8 76.6 50.6 30.8 41.9|0.78 11.6 75.1
Dyn-Adapter,, 5 [47]|62.9 90.8 62.9 98.4 81.0 81.0 53.6|80.0 94.8 82.1 75.4(65.4 60.9 39.2 69.2 37.7 32.4 19.7 30.9/0.28 5.2 67.8
DMPOQOg.3 (Ours) 68.8 92.5 70.2 99.1 90.1 88.1 54.2|84.6 96.0 85.2 75.5(81.6 65.6 48.0 78.3 78.3 51.3 31.1 44.6|0.78 5.2 75.2
Repadapter [28]
Dyn-Adapter,, , [47]|71.8 92.6 71.7 99.1 90.6 90.8 54.3|85.8 95.9 86.4 76.1|80.3 68.9 49.9 81.9 82.3 50.3 36.8 41.1|/0.38 11.6 76.4
DMPOg.7 (Ours) 70.1 93.4 71.7 99.1 90.5 91.1 53.6|85.3 96.1 86.4 75.9(81.8 68.9 51.0 81.0 80.7 49.6 34.4 43.0|0.78 11.6 76.2
Dyn-Adapter,, 5 [47]|69.0 92.5 68.0 98.9 88.1 86.4 53.7|81.9 95.5 85.2 74.8|69.9 64.3 44.1 77.4 70.4 40.6 28.3 33.3|0.38 5.2 724
DMPOQOo .3 (Ours) 69.8 93.4 71.4 99.1 90.0 91.1 53.6|85.4 96.2 86.4 75.5(81.7 68.9 50.9 81.5 81.3 49.8 34.3 44.9/0.78 5.2 76.2
Table S2. Results of different fine-tuning modules on VTAB-1K benchmark.
Method Pzr\fg“' FI(“g)P S | CIFAR-100 CI_JZ%'IZIOO NABirds ngggfs Stg';fr"srd St;‘;;rd Average
LoRA [16]
Dyn-Adapter, , [47] | 0.95 11.61 91.6 82.4 80.4 98.7 82.2 85.5 86.80
DMPOQOo.7 (Ours) 1.73 11.62 92.6 87.0 81.8 99.1 83.6 87.3 88.57
Dyn-Adapter, 5 [47] | 0.95 5.17 78.5 81.8 77.0 98.8 81.0 72.9 81.67
DMPOQOg.3 (Ours) 1.73 5.19 92.3 86.1 80.8 99.1 83.7 86.5 88.08
Adapter [15]
Dyn-Adapter, , [47] | 0.81 11.63 91.1 81.5 79.8 98.5 78.2 84.2 85.54
DMPOQg.7 (Ours) 1.60 11.64 91.6 84.0 80.1 98.5 80.0 86.6 86.80
Dyn-Adapter,, 5 [47] | 0.81 5.18 72.6 77.3 66.3 98.4 60.8 54.8 71.68
DMPOQg.3 (Ours) 1.60 5.20 90.5 84.0 79.2 98.5 80.3 85.7 86.37
Repadapter [28]
Dyn-Adapter, , [47] | 1.67 11.61 91.7 83.1 80.7 98.0 83.3 85.2 87.02
DMPOg.7 (Ours) 0.89 11.62 92.3 86.6 81.3 99.2 84.1 87.2 88.44
Dyn-Adapter, 5 [47] | 1.67 5.17 78.4 82.3 774 98.0 81.5 69.3 81.14
DMPOg.3 (Ours) 0.89 5.19 91.7 86.5 80.7 99.2 84.1 86.3 88.08

Table S3. Results of different fine-tuning modules on CIFAR-100 and five FGVC datasets.

predictor at the corresponding position, while X denotes
its absence. As shown in Tab. S5, inserting a high-order
statistics-based predictor at Stage 1 achieves better perfor-
mance than at Stage 2, particularly at 30% FLOPs. This
is because, at 30% FLOPs, most samples exit at Stage 1,
where inserting a high-order statistics-based predictor al-
lows to extract rich high-level discriminative features. How-
ever, at 70% FLOPs, the features at Stage 1 are more low-
level and representative compared to Stage 2. Without the
high-order statistics-based predictor, the original predictor
disrupts these low-level representative features more signif-

icantly, negatively impacting accuracy. Furthermore, using
only one high-order statistics-based predictor in early stage
results in a significant accuracy gap (> 1%) between 30%
FLOPs and 70% FLOPs, but inserting high-order statistics-
based predictors at both Stage 1 and Stage 2 effectively re-
duces this gap. Additionally, while inserting a high-order
statistics-based predictor at Stage 3 additionally offers mod-
erate performance improvements, the additional parameters
and limited gains lead us to restrict insertions to Stages 1
and 2.



Component ‘ Average Acc (%)
BYP HP | 30% FLOPs 70% FLOPs
X X 84.41 86.96
v X 84.96 87.68
X v 87.76 88.21
v v 88.08 88.57

Table S4. Average results of DMPO with different architecture
components. Note that gray represents our DMPO.

Stage ‘ Param. ‘ Average Acc (%)
1 2 3 4| M |30%FLOPs 70% FLOPs
X X X X 1.00 84.96 87.68
v o X X X 1.63 87.04 88.32
X v X X 1.34 85.42 87.66
v v X X 1.73 88.08 88.57
VERRARAR { 2.10 88.17 88.55

Table S5. Results of DMPO with different insertion positions of
high-order statistics-based predictors. Note that gray represents
our DMPO.
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Figure S3. (a) Confidence distribution at Stage 1 with and without
B at 50% inference FLOPs on CIFAR-100. The total number of
samples is 3,500. (b) Final 3 values across the four stages after
training, with each stage’s (3 initially setting to 1.

Sensitivity of o Regarding o, results of different settings
are summarized in Tab. S6. It can be observed that « is not
sensitive to different start and end values, and the default
configuration is kept for different tasks.

Start End Accgs  Accyr

[0.01,0.01,1.0,2.0] [1.5,1.0,0.1,0.1] 88.08  88.57
[0.01,0.01,2.0,5.0] [2.0,1.0,0.1,0.1] 88.04  88.45
[0.01,0.01,0.5,1.5] [2.0,1.0,0.1,0.1] 88.08 8845
[0.01,0.01,2.0,5.0] [5.0,2.0,0.1,0.1] 88.05  88.40

Table S6. Results of various « settings. Gray is default setting.

Effect of 3 To validate the effectiveness of 5 on perfor-
mance, we conduct an ablation study. As shown in Tab. S7,
X indicates that (3 is not used, while v'denotes its use. The
results demonstrate that 3 can further enhance overall per-
formance by improving the confidence of early stages in
classification. Besides, Fig. S3a proves that learned /3 effec-
tively enhances the classification confidence of early stages.
Fig. S3b illustrates that the values of learned S generally
decrease with increasing stage depth across most datasets.
This trend reveals that, compared to deeper stages, early
stages exhibit lower classification confidence due to limited
discriminative ability. Consequently, early stages tend to
learn larger S values to enhance confidence.

3 ‘ Average Acc (%)

| 30%FLOPs  70% FLOPs
X 87.08 87.76
v 88.08 88.57

Table S7. Average results with and without 5. Note that gray
represents our DMPO.
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Figure S4. Training losses across tasks and initialization methods.

S7. Convergence of Decoupled Optimization

As illustrated by the loss curves in Fig. S4, our decoupled
optimization algorithm demonstrates stable and rapid con-
vergence across various tasks and parameter initialization
methods.

S8. FLOPs of Different Module

For different model parts per stage, FLOPs is recorded as
0.0024G (1 Bypass), 0.048G (1 HP classifier), being much
lower than 4.2G (3 ViT blocks) and leading negligible cost.

S9. Training Overhead

We evaluate the training time and memory overhead with
a batch size of 32 on a single NVIDIA 3090 GPU. The



comparison of training samples per seconds is: 221 im-
ages/s (LoRA) v.s. 218 images (Dyn-Adapter) v.s. 194 im-
ages (DMPO). The memory consumption is: 5.55GB (Dyn-
Adapter) v.s. 5.67GB (DMPO). Overall, these results in-
dicate that DMPO introduces minimal additional training
overhead.

S10. Visualization of Images at Different
Stages

To intuitively demonstrate the feasibility of our DMPO,
we visualize the classified images at different stages. As
shown in Fig. S5, we train Dyn-Adapter [47] and our
DMPO on the CUB-200-2011 dataset and select five cor-
rectly classified images from Stage 1 and Stage 4 at 70%
FLOPs. We use LoRA [16] as the fine-tuning module. From
Fig. S5, it can be observed that our DMPO outperforms
Dyn-Adapter in correctly classifying more complex images
at early stages, indirectly indicating that DMPO’s early
stages exhibit stronger discriminative ability compared to
Dyn-Adapter.
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Figure S5. Visualization of the classified images at different stages by our DMPO and Dyn-Adapter. The top row shows images correctly
classified by Dyn-Adapter at Stage 1, the middle row shows images correctly classified by DMPO at Stage 1, and the bottom row presents
images correctly classified by DMPO at Stage 1 but only correctly classified by Dyn-Adapter at Stage 4.



