Learning Few-Step Diffusion Models by Trajectory Distribution Matching

Supplementary Material

A. Training Algorithm

We present the algorithm for distilling K-step TDM in Al-
gorithm 1.

Algorithm 1 Trajectory Distribution Matching.

Require: learning rate 7, desired sampling steps K, total
iterations [V, real score fy.
Ensure: optimized models fg, fy.
1: Initialize weights {6, v} by ¢;
2: fori < 1to N do
3: Sample noise € from standard normal distribution;
Sample {x;, } X! with initialized noise ¢ from gen-
erator fp by K steps via ODESolver.

Sample x;,, from {x;, }/<*.

®

5
6: Sample Timesteps ¢ from ¢, t0 £y, 41.
7: Obtain noisy samples x; ~ g(x¢|xy,, )
8 # update fake score

9: Compute Loss L, following Line 234.
10: P — T)Vd)ﬁw;

11: # update Generator

12: Compute Loss Ly following Eq. (11).

13: 0+ 60— 77V9£9;

14: end for

B. Derivations

Derivations of Eq. (9). Given the case without noise, the
learning objective of the fake score s, by score matching
is:
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Its gradient can be computed as follows:
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The global minimum is achieved when V, L(1)) = 0. It is
clear that when
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we have V4 L(yp) = 0. Hence the optimal fake score is

given in Eq. (15).

Derivations of Eq. (6).
computed as following:

The gradient of Eq. (6) can be
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This is the same as the approximated gradient of the orig-
inal objective:
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C. Additional Related Works

Recently, there mainly have been two lines in diffusion dis-
tillation: Trajectory Distillation and Distribution Match-
ing. Trajectory distillation tries to distill a few-step stu-
dent model by simulating the generative process of DMs.
These methods typically predict the multi-step solution of
PF-ODE solver by one step [12, 21, 27, 39]. Consistency
family [10, 17, 33, 35, 43] enforces self-consistency. These
methods suffer from numerical errors when solving pre-
trained PF-ODE. Distribution Matching tries to distill stu-
dent models via match at the distribution level. Diffusion-
GAN hybrid models [9, 29, 38] have been proposed for
this aim, however, stabilizing GAN training requires real
data, careful architecture design, and auxiliary regression
losses. Another promising way for distribution matching
is through score distillation [19, 22, 36, 41, 44]. These
methods typically ignore the intermediate steps of the tra-
jectory. Our method explores trajectory distillation at the
distribution level, enjoying the best of two worlds. Al-
though Hyper-SD [25] explores combining trajectory dis-
tillation and distribution matching, their works treat these
two techniques as distinguished parts, requiring multiple
training objectives and multiple training stages. In contrast,
our proposed objective naturally unifies trajectory distilla-
tion and distribution matching, providing a highly efficient
and effective distillation method. Besides, motivated by the
similarity between consistency models and our proposed



method in learning generator, we propose a surrogate train-
ing objective, introducing the Huber metric into training.
This leads to better performance and potentially encourages
the community to explore other types of distance metrics in
distilling via distribution matching. Recently, DMD2 [42]
also explored distilling a few-step generator via distribution
matching. However, our method is fundamentally different
from their work. Their work tries to predict clean images
at different timesteps, ignoring alignment with the teacher’s
trajectory. This leads to harder learning and slower con-
vergence. In particular, in distilling 4-step SDXL, we only
require 1.25% of the training cost for DMD?2, while achiev-
ing significantly better performance. Besides, a recent work
MMD [28] also developed a multi-step generator based on
a similar style with score distillation. However, our work
is essentially different from them, since MMD applies mo-
ment matching for diffusion distillation, while we propose
a new distillation paradigm that unifies trajectory distilla-
tion and distribution matching. Specifically, MMD employs
moment matching to train both generator and fake “score”
which is fundamentally different from score matching as
noted in their paper [28]; In contrast, we use reverse KL
to train the generator and score matching to train the fake
score. Moreover, MMD uses ancestral sampling (DDPM
sampler [7]) from noisy real data in training, which intro-
duces large stochasticity in intermediate samples, is sub-
optimal for few-step sampling. In contrast, we use deter-
ministic sampling from noise which is image-free, more
effective for fewer-step sampling, and builds a non-trivial
connection with trajectory distillation.

Additionally, a concurrent work [3] explored flexible de-
terministic sampling but was limited by point-to-point self-
consistency and required training the generator at arbitrary
timesteps, challenging model capacity. Its extension to
text-to-image generation also remains unclear. In contrast,
our method trains the generator at only K timesteps with
distribution-level matching, enabling more effective flexible
deterministic sampling. We further achieve state-of-the-art
performance in text-to-image generation.

D. Experiment details

We use the AdamW optimizer for both the generator and
fake score. By default, the 3; is set to be 0, the 35 is set to
be 0.999.

SD-v1.5 We adopt a constant learning rate of 2e-6 for the
generator and 2e-5 for the fake score. We apply gradient
norm clipping with a value of 1.0 for both the generator
and fake score. We use batch size 256. We set the CFG as
3.5. Generally, the training is done within 20k iterations for
unified training and within 3k iterations for specific 4-step
training.
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Figure 8. Visual samples of varying the condition steps and sam-
pling steps. The prompt is “A corgi with sunglasses, traveling in
the sea””

SDXL. We adopt a constant learning rate of le-6 for the
generator and Se-6 for the fake score. We apply gradient
norm clipping with a value of 1.0 for both the generator
and fake score. We use batch size 64. We set the CFG as
8. Since SDXL has 2.7B parameters, fine-tuning it at 1024
resolution is computationally expensive. We first fine-tune
for 1k iterations at 512 resolution, then fine-tune for another
1k iterations at 1024 resolution. The fake score is initialized
from the pre-trained SDXL in both stages.

PixArt-a  We adopt a constant learning rate of 2e-6 for
the generator and 2e-5 for the fake score. We set the CFG
as 3.5. We apply gradient norm clipping with a value of 1.0
for both the generator and fake score. We use batch size 32.
The training can be done within 500 iterations.

E. Additional Experiments

The Effect of Varying Sampling Steps. We investigate
the impact of different sampling and conditioning configu-
rations, with results visualized in Fig. 8. The results show
that TDM-unify exhibits systematic behavioral variations
across different combinations of conditional and sampling
steps. Notably, the model demonstrates an intrinsic under-
standing of the underlying ODE trajectory, adaptively posi-
tioning itself at appropriate points along this path given the
specified condition steps.

Comparison on Diversity We quantitatively and visu-
ally compared our method with the most direct baseline



Table 6. Additional comparison to the most direct baseline and base model. TDM on SD 1.5 here is TDM-unify-GAN in Tab. 1, which is
initialized from original SD 1.5 and adopts the same GAN loss as DMD?2. The same CFG is applied across methods.

SD 1.5 SDXL
Method
HPST Diversity Score! Impr. Recallf HPS{ Diversity Scoret Impr. Recallf
Base Model  25.50 0.66 0.68 33.19 0.65 0.76
DMD2 29.49 0.61 0.54 31.46 0.61 0.70
TDM 30.83 0.64 0.59 34.88 0.63 0.73

Table 7. Comparison on HPS across variants in 4-step generation
based on SD-v1.5.

Train-DDIM  Train-DPMSolver Test-DDIM  Test-DPMSolver HPS?T

v v 31.04
v v 31.35
v v 30.86
v v 31.30

DMD?2 and the base model. We adopt Improved recall and
diversity score as metrics. The results in Tab. 6 and Fig. 9
indicate that our method is more diverse than DMD?2.

F. Ablation Studies
F.1. Ablation Details

We use the same hyperparameters and training iterations for
all variants, with differences only in the ablating compo-
nents.

The formulation of using GANs during distillation
Following the previous work [11, 20], we use latent dis-
criminators, with the backbone based on the UNet encoder
from SD-v1.5. In particular, we perform the following loss
for learning generator:

K—1 th
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The ADVLoss is the adversarial loss. Note that for a fair
comparison, we inject the desired sampling steps K into
GAN’s discriminator too.

Details in implementing original loss We use normal-
ization proposed in DMD [41], while we do not use the nor-
malization in our proposed surrogate loss.

Details in implementing DMD2 Following the original
DMD2 paper [42], we update the fake score 10 times per
iteration. Other hyper-parameters remain consistent with
our configuration.

Table 8. Comparison on HPS across variants in 4-step generation
based on SD-v1.5.

Method HPS?T
TDM (Matching noisy samples x;,) 31.35
Matching clean samples X, 24.63

Table 9. The effect of using more expensive Fisher Divergence in
4-step generation.

Method HPStT

TDM 31.35
TDM w/ Fisher 31.70

(c) Ours

Figure 9. Comparison on Mode Cover in 4-step generation based
on SD-v1.5. It is clear that our method has better mode cover and
image quality. The prompt is “A cute dinosaur, cartoon style”

F.2. Additional Ablation

To gain a more comprehensive understanding of our pro-
posed methods, We conducted additional ablation studies in
this section.



(b) Ours (matching noisy samples)

Figure 10. Comparison on the compatibility with deterministic
samplers in the 4-step generation on SD-v1.5. It is clear that our
method (matching noisy samples) has better visual quality.

Comparison on Mode Coverage. We found that using
importance sampling for learning the fake score led to im-
proved performance (Tab. 5) and better mode coverage. As
shown in Fig. 9, our method demonstrates notably supe-
rior image quality and mode coverage. This improvement
may be attributed to the fact that the fake score cannot ac-
curately track the student distribution without using impor-
tance sampling. We additionally compare to the concur-
rent work DMD?2 [42]. We found that DMD?2’s generated
results also suffer from mode collapse, while its impact is
somewhat less severe compared to the variant without im-
portance sampling. This may be due to DMD?2 trains the
fake score multiple times at each iteration, resulting in a
more accurate fake score at the cost of slow training.

Effect of Different ODE Solvers. In the experiments pre-
sented in the main body, we use DDIM [32] as the ODE
solver during training and DPMsolver [15] during infer-
ence. Here we ablate the choice of ODE solver, with results
shown in Tab. 7. We find that using DDIM versus DPM
during training yields similar performance, which may be
attributed to two reasons: 1) regardless of whether DDIM or
DPM is used during training, we can utilize DPM sampling
at test time to improve performance; 2) our training only
backpropagates through one ODE step, preventing higher-
order ODE solvers like DPMSolver from benefiting from
higher-order information in the training.

Matching noisy samples x;, v.s. clean samples X;, A
core design of our method is to align noisy samples x;, pre-
dicted by the model with the target diffusion, rather than
the clean samples X, predicted by the model. This design
makes the support of deterministic sampling possible. We
conduct experiments on matching clean samples, the results
are shown in Tab. 8 and Fig. 10. It is clear that our method
has a better performance, while matching clean samples de-

* 1. Considering image quality and image-text alignment, which image is better? (Prompt: A
worker that looks like a mixture of cow and horse is working hard to type code)

Figure 11. An example of the evaluation question for our user
study.

liver a poor deterministic sampling with notable artifacts.

Flexibility for using different distribution divergence
The proposed TDM has the flexibility for using different
distribution divergence instead of reverse KL divergence.
In particular, the performance of TDM can be further im-
proved by more expensive Fisher divergence (Tab. 9).

G. User Study Details

We conducted user research by presenting users with two
anonymous images generated by different models and ask-
ing them to select the sample with higher image quality and
better prompt alignment. We randomly selected 20 prompts
for image generation. Each image was manually verified to
ensure the absence of inappropriate or dangerous content.
An example of an evaluation question is shown in Fig. 11.
In total, we collected approximately 40 user responses.

H. Additional Qualitative Results

We present the additional visualization of ODE trajectory
with clean samples at different timesteps in Fig. 14.

We present the visual samples of interesting LoRA into
unseen customized models in Figs. 12 and 13. It can be seen
that compared to the competing baseline, our method shows
better visual quality and better style preservation.
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Figure 12. Additional Samples of integrating LoRA into unseen customized models - dreamshaper.
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Figure 13. Additional Samples of integrating LoRA into unseen customized models - realisticvision.
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Figure 14. Additional visualization of ODE trajectory with clean samples at different timesteps. It is clear that our method suffers less
from the CFG artifact and has better visual quality.
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