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Supplementary Material

A. Detailed Construction Process of LRS-VQA
In this section, we describe the construction process of
LRS-VQA in detail, including data collection and filtering,
label creation, and quality assurance.

A.1. Unique Object Extraction
Given the challenge of precisely referring to a specific
unique object in large Remote Sensing Images (RSIs) (e.g.,
identifying a particular ship among hundreds of ships park-
ing on the same harbor), we perform rule-based unique ob-
ject extraction using object detection labels from our col-
lected RS datasets [35, 37, 62]. The process is detailed be-
low:

(i) We first filter out small images and calculate the to-
tal number of instances for each category in the image and
remove categories with more than 40 instances per image.

(ii) For the remaining categories, we extract attributes
like absolute position, absolute size, relative position and
relative size within the same category. Based on this in-
formation, we determine whether an object is unique and
create unique reference (e.g., “the top-most airplane” or
“the only storehouse in the bottom-left corner of the im-
age”). Note that multiple thresholds are set during this pro-
cess. For example, a target is labeled as the distinguishable
“largest” only if its area exceeds that of the second-largest
target in the same category by more than 20%. Similarly, a
target is marked as “right-most” within its category only if
it is located farthest to the right and its offset distance from
the next closest target is greater than 20 pixels.

(iii) Based on the above results, we crop the region con-
taining the unique targets from the large RSI and draw a red
box around the object as the visual prompt. For small tar-
gets, if the longer side of the target is less than 400 pixels,
the cropping area is expanded by 400 pixels. For larger tar-
gets, we apply appropriate scaling to ensure that the longer
side does not exceed 1400 pixels.

Finally, for each large RSI, we obtain local image
patches containing unique targets, along with their corre-
sponding unique references.

A.2. Question-Answer Pair Generation
Based on the above information, we additionally filter out
extremely small objects (smaller than 16×16 pixels). Then
we design prompts as in Tab. 1 to instruct GPT-4V to gen-
erate a diverse set of question-answer pairs. We carefully
design the prompt to avoid generating questions about the
entire image (e.g., counting targets across the whole image).

Questions involving whole-image counting for specific cat-
egories are separately generated based on object detection
labels.

During the initial generation of the VQA corpus, we ob-
served that the answers to VQA questions were predomi-
nantly “yes” or “no”. This could lead to the LVLM achiev-
ing high accuracy even without visual input. To address this
issue, we carefully refine the prompts to guide GPT-4V in
generating diverse and informative responses, constrained
to a length of 1 to 3 words, while ensuring the responses are
provided in an open-ended format. For the final version fil-
tered by Qwen2-VL, we then conduct expert spot-checking
and correction.

Additionally, during the Qwen2-VL-based quality in-
spection process and manual check, we observed that GPT-
4V exhibits limitations in handling certain types of ques-
tions specific to remote sensing scenarios, such as object
orientation. This indicates that even state-of-the-art LVLMs
still need improvement when interpreting RSI.

B. More Experiment Details

B.1. Training Data Construction
We first filter out excessively large images from three RS
datasets, as the DIP has a fixed 2-layer structure during
training. To ensure the GSD range during training covers
the dynamic range in inference, we apply different down-
sampling factors to maintain varied image sizes and con-
struct multi-GSD inputs.

Subsequently, we create two types of questions: count-
type questions based on object detection labels and relation-
based questions using scene graph annotations. For count-
type questions, we avoid querying categories with exces-
sively high counts and control the proportion of samples
where the answer is “1”. For relation-based questions, we
ask whether a specific relationship exists between any two
categories in the image, with answers provided as “yes” or
“no”.

B.2. Implementation Details
Training setting. During training, we follow the same
experimental setup of the SFT stage as LLaVA-1.5 and
LLaVA-Next, with a global batch size of 128 and a learning
rate of 2e-5. Additionally, the maximum length of Vicuna-
1.5 and Qwen2 are 2048 and 16384, respectively. The over-
all SFT process is largely consistent with that of LLaVA-
1.5, as our RFM is a plug-and-play module that can be



messages = [ {"role":"system", "content": f“““You are an AI visual assistant tasked with
analyzing remote sensing images. Given the visual input (a part of a large image) and corresponding object
information, your job is to create a list of question-answer pairs around the target object and its surroundings.
Each sentence should unambiguously refer to the object based on the ‘why unique’ information.
Finally, you need to return [‘qa-pairs’: [‘ques-id’: question id, ‘question’: question, ‘type’: question type,
‘answer’: answer]] in JSON format. Do not return any notes after the JSON. The target object is highlighted by a
red rectangle in the given image patch, and the ‘why-unique’ provides how to refer it in the original large image,
you need to rely on this information to ask questions.

1. Based on all visible elements and object information, ask 5-10 questions of various types, including object exis-
tence, object relation, complex reasoning, and object status. Avoid questions about color, object shape and object
orientation. Additionally, questions requiring reasoning should involve multifaceted analytical thought processes
(e.g., analyzing object distribution patterns) based on the target object and its surroundings. Possibly include
objects that are not provided, such as houses, roads, water and trees if they are obvious and non-ambiguous.
2. Ensure each question has a definite answer without any ambiguity, and answer each question using a single
word or phrase, no more than 3 words.
3. Only ask questions about clear answers; avoid uncertainties or unclear elements, such as unknown, uncertain,
some, or several.
4.Avoid question formats that only allow for two options or overly simplistic responses (e.g., ‘Yes’ or ‘No’).
5. Do not mention the red highlight box or asking about the target object’s category—consider it known.
6. Use complete information from ‘why-unique’ to ensure unique reference.
Follow the above guidelines and ensure consistency with the provided category.”””}
] messages.append({"role":"user", "content":‘\n’.join(query)})

Table 1. The prompt to GPT-4V for generating question-answer pairs about the unique objects in the large-size RSIs.

seamlessly integrated into the SFT process of any modular
LVLM.

More details about coarse-to-fine token pruning. Our
method involves stopping at a specific layer p of the DIP
during traversal, pruning based on the RFM output of that
layer, and then concatenating the pruned vision tokens with
the vision tokens from the thumbnail view, along with text
instructions, to form the multimodal input for the LLM. Al-
though only a subset of image tiles is selected when travers-
ing the DIP, we pad the unselected image tiles after the vi-
sion encoder and then add the “image newline” delimiter
along with global position embeddings. Subsequently, we
extract the vision tokens corresponding to Ip+1key and the “im-
age newline” positions from the fully padded tensor, which
serve as T p+1,hr

vis . The definitions of these symbols are con-
sistent with those in the main paper.

Maximum sequence length of LLM. For Vicuna-1.5,
due to the limitations of its pre-trained weights, it is chal-
lenging to train its long-context processing capability from
scratch. Additionally, its performance often degrades when
extrapolating to longer sequences. As for Qwen2, we have
not yet explored the impact of extending the maximum se-
quence length to cover all vision tokens from original res-
olution imagery, primarily due to the significant time and

resource costs. Moreover, our method does not rely on
enhancing long-sequence processing capabilities to handle
large images but rather serves as a strategy to improve the
perception performance of existing modular LVLMs.

More details of comparison methods.
During the comparison of token reduction methods, we

strive to maintain consistency or make necessary adap-
tations due to the differing principles of each approach.
Specifically, for PruneMerge++ [58], CLIP-based pruning,
RemoteCLIP-based pruning, and our RFM-based pruning,
we set the token retain ratio to 25%. For VisionZip [77],
the number of retained tokens is set to 64. For Pyramid-
Drop [72] under the Qwen2 backbone, the pruning lay-
ers are configured to [7, 14, 21]. For all other settings of
FastV [8] and PyramidDrop, we adhere to their original im-
plementations.

B.3. Flash Attention and Multi-Turn Support

Our method follows existing token pruning approaches [72,
88] and is compatible with the use of flash attention as well
as multi-turn dialogue

For flash attention, following SparseVLM [88], we in-
troduce an additional forward pass that incorporates a spe-
cially designed value matrix. This allows us to extract the



mean value of the processed attention map without explic-
itly computing the full attention map.

For multi-turn conversations, our method offers advan-
tages over existing grid-based dynamic high-resolution ap-
proaches. These methods typically rely on pre-defined grids
to partition and store all corresponding image tiles, which
can be memory-intensive. In contrast, our approach only
caches the features from the first two layers of the DIP
(i.e., the vision tokens from the thumbnail view and the first
group of image tiles). For higher-resolution image tiles, we
maintain a dynamic selection strategy, extracting features
only for text-related key tiles. This significantly reduces
memory overhead while preserving efficiency in multi-turn
scenarios.

C. Detailed Efficiency Calculation
Detailed calculation of vision tokens. For vision tokens
number calculation, a 4,000×4,000 image generates thumb-
nail view and 144 image tiles after processing with anyres-
p144, resulting in (144 + 1) × 576 = 83,520 vision tokens.
Among these, the tokens from the image tiles are downsam-
pled using bilinear interpolation in the anyres strategy, ulti-
mately yielding 144 × 144 + 576 = 21,312 that are fed into
the LLM. This accounts for the number of vision tokens re-
ported for anyres-p144, FastV, and PyramidDrop. For Prun-
Merge++ and VisionZip, we calculate the number of vision
tokens based on their respective compression strategies.

For our method, we fix a 4-layer pyramid for the
4,000×4,000 input. Assuming that the thumbnail view and
image tiles of the first three layers are fully utilized, this
generates (1+9+36)×576 = 26,496 vision tokens. For the
fourth layer of the DIP, as our strategy dynamically selects
image tiles based on the output of the RFM, we computed
the average number of image tiles generated in the fourth
layer for all images close to 4,000×4,000 in the datasets.
This average is 50, resulting in 50 × 576 = 28,800 vision
tokens. Therefore, the total number of vision tokens pro-
cessed by the vision encoder in our method is 26,496 +
28,800 = 55,296. After token pruning with the ratio 0.25,
the token number to LLM is 50× 144× 0.25+ 576 = 2,376.

Detailed calculation of TFLOPs. We follow Pyramid-
Drop to calculate the TFLOPs during inference. For Pyra-
midDrop and FastV, we compute the TFLOPs by adapting
the formulas provided in their respective papers, adjusting
the number of vision tokens accordingly.

For our method, we account for the 4 layers in RFM and
the 28 layers in Qwen2-7B. The FLOPs of the multi-head
attention and the feedforward network modules are repre-
sented as 4nd2 + 2n2d + 2ndm, where n is the number
of vision tokens fed into the LLM, and d,m are 3584 and
18944 in Qwen2-7B, respectively. The number of vision to-
kens input to RFM in DIP is calculated as 9 × 144 + 576 =
1,872 (layers 1-2), 36 × 144 + 576 = 5,760 (layer 3), and

50 × 144 + 576 = 7,776 (layer 4), respectively. Based on
these values, the FLOPs F of our method is computed as
follows:

F = 4 ⋅ (4 ⋅ 1872 ⋅ d2 + 2 ⋅ 18722 ⋅ d + 3 ⋅ 1872 ⋅ d ⋅m)

+ 4 ⋅ (4 ⋅ 5760 ⋅ d2 + 2 ⋅ 57602 ⋅ d + 3 ⋅ 5760 ⋅ d ⋅m)

+ 4 ⋅ (4 ⋅ 7776 ⋅ d2 + 2 ⋅ 77762 ⋅ d + 3 ⋅ 7776 ⋅ d ⋅m)

+ 28 ⋅ (4 ⋅ 2376 ⋅ d2 + 2 ⋅ 23762 ⋅ d + 3 ⋅ 2376 ⋅ d ⋅m)

= 36.61T (1)

D. More Experimental Results
Different distillation losses. We explored different com-
binations of distillation losses, as shown in Tab. 2. It can
be observed that the KL loss plays a crucial role, while the
MSE loss applied to the high-resolution vision tokens also
contributes to performance improvement.

KL MSE Color Count Pos Acc

✓ 44.70 29.04 49.56 41.20
✓ 42.07 30.75 46.14 39.73

✓ ✓ 44.70 31.00 49.72 41.89

Table 2. Ablation study on different losses used in attention distil-
lation, under LLaVA-Next-Qwen2.

Different pruning ratios. As shown in Tab. 3, we em-
ploy multiple higher-resolution grids under the anyres strat-
egy: anyres-p36 and anyres-p49. Then we conduct exper-
iments with different pruning rates based on RFM-based
pruning. The results indicate that the performance of the
anyres baseline degrades as the supported image size in-
creases, whereas our pruning method achieves consistent
improvements. We attribute this to the fact that larger im-
age sizes introduce more irrelevant background informa-
tion, while our method effectively drops unnecessary vision
tokens.

Different high-resolution vision token process. Addi-
tionally, for the DIP layers that have already been traversed
(i.e., the layers before the final pruning layer), we attempt to
prune their vision tokens as well. Specifically, we concate-
nate the pruned vision tokens from all traversed DIP layers,
as shown in Tab. 4, the performance slightly decreases, pos-
sibly due to interference caused by the mixed resolutions of
vision tokens across multiple hierarchical DIP levels.

Training with pruning. We further explore the effects
of directly applying pruning during the SFT stage, as shown
in Tab. 5. During training, the pruning ratio is set to 0.75,
and the LLM observes the pruned vision tokens. Addition-
ally, we experiment with feeding the text portion (i.e., fu-
sion text) of the hidden states output by the RFM to the



Method Drop
Ratio Color Count Pos Acc

anyres-p36 0% 42.31 29.77 44.71 39.00

w/ prune (Ours)

25% 42.71 30.10 45.19 39.41
50% 42.79 31.40 47.49 40.64
75% 41.75 30.91 48.45 40.45

anyres-p49 0% 40.00 30.34 44.95 38.50

w/ prune (Ours)

25% 40.72 30.91 46.38 39.41
50% 40.64 31.65 48.61 40.37
75% 41.75 30.51 48.37 40.29

Table 3. Ablation study on different prune ratios with LLaVA-
Next-Qwen2 with larger resolutions, when pruning vision tokens
based on RFM results without DIP. “pX” indicates the max num-
ber is X for the pre-defined grids.

Setting Color Count Pos Acc

concat 44.22 31.48 48.21 41.39
select 44.70 31.00 49.72 41.89

Table 4. Ablation study on different high-resolution vision token
processing, under LLaVA-Next-Qwen2. “concat” means concate-
nating all pruned vision tokens from all traversed DIP layers as
high-resolution part. “select” means selecting the pruned tokens of
the final pruning layer as high-resolution part, which is employed
in the main paper.

Prune Fus. Text Color Count Pos Acc

✓ × 41.91 26.02 49.01 39.09
✓ ✓ 40.96 31.97 44.63 39.25
× × 44.70 31.00 49.72 41.89

Table 5. Ablation study on training with vision token pruning and
text fusion. “Fus. Text” refers to replacing the original text tokens
with the text portion (i.e., fusion text) output by the RFM when
feeding into the LLM.

LLM, represented as “Fus. Text” in Tab. 5. The results in-
dicate that introducing token pruning during training leads
to a performance drop. We think this is because the model
lacks access to complete image information, which impairs
its ability to accurately perform text-aware region localiza-
tion, resulting in inferior performance compared to standard
SFT.

It is important to note that our method cannot utilize the
fusion text setting in Tab. 5. Because under such a setting,
during training, the LLM receives fusion text along with full
vision tokens as input, whereas during inference, the LLM
receives fusion text along with pruned vision tokens. This
creates an inconsistency between training and inference.

Different layer-pairs in distillation. We explore the im-
pact of different RFM-LLM layer-pairs used for distillation,
as shown in Tab. 6. Specifically, for the 28-layer Qwen2-

RFM
Layers

LLM
Layers Color Count Pos Acc

3 [1,8,14] 41.35 28.30 47.89 39.27
4 [1,5,11,14] 44.70 31.00 49.72 41.89
4 [1,7,13,18] 40.88 32.63 49.48 41.06
4 [1,7,14,20] 41.83 28.22 47.89 39.41
5 [1,5,10,12,14] 43.98 29.36 48.13 40.58
6 [1,3,6,9,12,14] 42.31 31.08 47.18 40.26
6 [1,4,8,12,16,20] 43.75 30.51 48.13 40.88
6 [1,5,10,15,20,24] 42.31 31.08 47.18 40.26

Table 6. Ablation study on different RFM-LLM layer-pair con-
figurations in MME-RealWorld-RS, with LLaVA-Next-Qwen2.
“RFM Layers” means the number of layers in RFM.

7B, we observed that the text-related attention localization
is most accurate in its deep layers (approximately layers
14–24) when answering questions about both the global
content and local details of the large RSIs.

From Tab. 6, it can be observed that as the number of
LLM layers for distillation increases, it becomes more chal-
lenging for the RFM to learn precise text-aware localization
capabilities. Although increasing the number of layers in
the RFM can enhance its learning ability, it also raises the
cost of training and inference. Moreover, the RFM doesn’t
need to possess highly accurate localization capabilities in
the shallow layers of DIP, it only needs to provide rough
positions to index image tiles of the next DIP layer. Addi-
tionally, when used for pruning, the vision tokens from key
image tiles already narrow down the scope, making it suf-
ficient to recognize general background information. Fur-
thermore, retaining a certain number of context tokens can
actually be beneficial for certain types of questions.

Detailed comparison with baselines. We provide a
more comprehensive comparison with two simple but vital
baselines: CLIP-L14 and RemoteCLIP-L14. Specifically,
under identical anyres or DIP settings, we partition the im-
age using a sliding-window approach (336×336 for CLIP
and 224×224 for RemoteCLIP). Then we compute the sim-
ilarity map between the input text and the image features for
each image tile, which are subsequently stitched together to
form a complete heatmap that guides the token pruning.

Tab. 7 presents a comparison of localization accuracy
against these baselines across three datasets. While con-
ceptually simpler, these baselines struggle due to their lim-
ited capacity to understand complex referring expressions
and the lack of global perception inherent in the sliding-
window mechanism. This highlights the importance of dis-
tilling knowledge from the LLM’s attention, which enables
our RFM to grasp complex semantics.

Furthermore, Tab. 8 shows the performance and FPS
comparison under the same pruning setting (LLaVA-Next-
p25). The accuracy trends observed here are largely con-



Pruning Guidance LRS-FAIR LRS-Bridge LRS-STAR DIOR-RSVG RRSIS-D
Teacher LLM Attn. 53.03 58.66 56.73 74.81 73.88
CLIP Sim. 23.87 16.73 19.82 29.10 27.53
RemoteCLIP Sim. 37.04 22.99 32.21 43.12 41.81
RFM Attn. (Ours) 47.89 49.08 47.01 64.76 61.17

Table 7. Localisation recall (%) of different pruning guidance.

Setting MME-RW-RS FPS LRS-FAIR LRS-Bridge LRS-STAR FPS
LLaVA-Next-p25 39.65 0.188 20.99 36.38 26.18 0.176
w/ CLIP Sim. 36.86 0.171 18.12 32.30 24.46 0.162
w/ RemoteCLIP Sim. 38.77 0.148 20.36 34.24 25.32 0.139
w/ RFM (Ours) 41.28 0.165 21.65 37.55 26.83 0.157

Table 8. VQA accuracy (%) and FPS with different token pruning guidance methods. FPS on LRS-VQA averaged across 3 datasets.

sistent with the localization accuracy results. It is worth
noting that although RemoteCLIP enhances performance on
remote sensing imagery, its smaller input size of 224×224
necessitates partitioning the image into more tiles, which
adversely affects inference speed on large images.

Detailed results on LRS-VQA. The complete leader-
boards on the three parts of LRS-VQA are shown in Tab. 9,
Tab. 10 and Tab. 11, respectively. Notably, on questions
that require more global-scale perception capabilities, such
as rural/urban classification, high-resolution LVLMs do not
necessarily outperform low-resolution LVLMs. Addition-
ally, the language preference inherent in the LVLM itself
can influence its performance when answering open-ended
questions, as it must precisely describe the corresponding
vocabulary or its synonyms. Overall, LVLMs like Qwen2-
VL, LLaVA-OV, and IXC-2.5, which are trained on large
datasets and utilize higher resolutions, also demonstrate
strong performance in large RSI perception tasks.



Method Max Res. count category shape status reasoning rural/urban OverAll
LLaVA1.5 336×336 10.50 13.44 7.37 7.75 25.25 48.25 18.76
SLiME 672×1,008 14.25 9.82 8.07 9.25 24.50 36.75 17.11
SEAL - 7.00 12.50 3.50 20.50 28.75 55.50 21.29
LLaVA-FlexAttn 1,008×1,008 9.50 10.59 6.32 20.75 24.00 46.25 19.57
MGM-HD 1,536×1,536 15.50 12.66 9.47 6.00 23.75 40.00 17.90
LLaVA-UHD-v2 672×1,008 17.50 11.63 9.04 23.00 26.25 49.50 22.82
IXC-2.5 4,096×4,096 22.75 15.25 15.50 22.00 26.50 49.50 25.25
LLaVA-OV 2,304×2,304 16.25 19.90 8.77 12.75 27.25 38.75 20.61
Qwen2-VL 3,333×3,333 22.50 15.25 12.28 10.00 24.25 58.50 23.80
Geochat 504×504 13.50 8.01 14.04 3.50 19.75 62.25 20.18
RSUniVLM 336×336 21.00 11.37 15.98 2.00 25.00 50.75 21.02
Claude-3.5-Sonnet - 11.75 4.12 16.84 1.50 15.00 28.50 12.95
Gpt-4o-mini - 12.75 11.37 11.37 12.50 19.75 44.25 18.67
Gpt-4o - 16.00 13.44 14.98 18.00 24.00 46.50 22.15

Table 9. Detailed results on LRS-FAIR.

Method Max Res. count background color rural/urban OverAll
LLaVA1.5 336×336 6.50 18.37 38.79 59.13 30.70
SLiME 672×1,008 13.50 18.78 34.55 61.51 32.09
SEAL - 0.00 31.50 36.00 71.50 34.75
LLaVA-FlexAttn 1,008×1,008 4.50 17.96 37.58 59.92 29.99
MGM-HD 1,536×1,536 12.25 18.78 52.73 59.92 35.92
LLaVA-UHD-v2 672×1,008 5.00 17.55 44.24 63.49 32.57
IXC-2.5 4,096×4,096 14.50 20.30 55.34 63.49 38.41
LLaVA-OV 2,304×2,304 4.50 20.82 57.58 57.54 35.11
Qwen2-VL 3,333×3,333 15.50 20.41 57.58 59.00 38.12
Geochat 504×504 8.75 11.84 22.42 55.16 24.54
RSUniVLM 336×336 10.25 13.06 43.64 63.49 32.61
Claude-3.5-Sonnet - 5.25 11.43 33.33 56.75 26.69
Gpt-4o-mini - 4.75 17.96 50.97 54.29 31.99
Gpt-4o - 14.75 18.37 43.03 51.19 31.84

Table 10. Detailed results on LRS-Bridge.

Method Max Res. count category color shape status reasoning rural/urban OverAll
LLaVA1.5 336×336 10.75 18.67 36.50 10.00 11.33 15.67 55.50 22.63
SLiME 672×1,008 12.75 18.33 41.50 10.50 12.67 16.00 49.17 22.99
SEAL - 0.25 20.50 33.50 10.00 10.50 17.75 56.50 21.29
LLaVA-FlexAttn 1,008×1,008 11.50 17.00 36.17 8.67 13.33 14.83 57.83 22.76
MGM-HD 1,536×1,536 15.50 12.66 49.50 18.75 10.30 10.18 24.00 20.13
LLaVA-UHD-v2 672×1,008 16.25 18.67 43.50 15.67 14.83 16.17 57.50 26.08
IXC-2.5 4,096×4,096 15.75 23.50 48.00 16.50 13.33 17.50 56.50 27.30
LLaVA-OV 2,304×2,304 9.75 25.33 51.00 14.00 10.17 18.83 53.50 26.08
Qwen2-VL 3,333×3,333 19.25 22.83 46.50 11.17 13.00 18.33 64.00 27.87
Geochat 504×504 13.50 8.01 24.75 10.75 5.42 14.04 19.75 13.75
RSUniVLM 336×336 8.00 13.50 51.67 25.17 4.50 14.00 56.17 24.72
Claude-3.5-Sonnet - 6.34 6.00 41.67 1.67 12.33 3.00 22.00 13.29
Gpt-4o-mini - 10.78 20.67 40.67 15.17 14.50 20.33 58.83 25.85
Gpt-4o - 11.78 21.50 48.17 23.83 12.50 20.50 53.50 27.40

Table 11. Detailed results on LRS-STAR.
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