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Figure 8. Objects used in the real-world experiments

6. Real-world Setup

As shown in Figure 7, We use a franka panda robot arm for
execution and a Intel RealSense D435 camera for capturing
point cloud. We also adopt the same object segmentation
method with CORN [8], consists of color-based segmen-
tation followed by depth-based back-projection to obtain a
single-view object point cloud.

7. RL-based Teacher Policy
7.1. Reward Design

Following Cho et al. [8], Kim et al. [19], the reward function
in our domain is defined as:

T = Tsuc + Treach + Tcontact — cene'r‘gyu (8)

where g, is the task success reward, ryeqcn, 1S the goal-
reaching reward, 7.ontact 1S the contact-inducing reward,
and Cepergy is the energy penalty.

The task success reward is defined as:

Tsuc = ﬂsum (9)

where 14, is an indicator function that returns 1 when the
object’s pose is within 0.05m and 0.1 radians of the target
pose.

To facilitate learning, we introduce dense rewards 7,.cqch
and 7.ontact, formulated based on a potential function [37]
as:

r=7¢(s") — ¢(s), (10)

where 7y € [0, 1) is the discount factor. Specifically,
Preacn(s) = kg’kaldo’g(S)v (11)
d)contact(s) = krﬂykd.dh’o(s)v (12)

where kg, kq, k. € R are scaling coefficients. The term
d, 4(s) represents the distance between the current object
pose and the goal pose, measured using a bounding-box-
based distance metric, while dj, ,(s) denotes the distance
between the object’s center of mass and the tip of the grip-
per.

The energy penalty is defined as:

7

Cenergy = ke Z Tiqiv (13)
i=1

where k. € R is a scaling coefficient, and 7; and ¢; denote
the torque and velocity of the i joint, respectively.

7.2. Architecture
World Model FiLM  Success Rate
X X 94.1
v 'S 93.9
v v 93.5

Table 5. Success rate of RL-based Teacher Policy.

Our teacher policy architecture consists of separate en-
coders for each modality and an MLP-based policy net-
work, which proves sufficiently effective for RL training.



Figure 9. Simulation Environment Setup.

We also experiment with incorporating our proposed world
modeling and FiLM into the teacher policy, as shown in Ta-
ble 5. However, the performance remains nearly unchanged
compared to the baseline approach. Together with the anal-
ysis in Figure 3, we attribute this to the RL policy already
reaching its performance upper bound given the current ar-
chitecture. The core contribution of DyWA primarily ben-
efits the distillation process, facilitating better optimization
of the imitation loss rather than improving the teacher pol-
icy itself.

8. Alternative of Dynamics Factor Condition-
ing

MLP Cross Atten FiLM
Success Rate  73.3 70.1 82.2

Table 6. Success Rate of student policy with different dynamics
conditioning methods.

To investigate alternative conditioning mechanisms, we
experimented with cross-attention layers as a replacement
for FiLM. However, this approach led to significantly de-
graded performance. We hypothesize that the transformer-
based cross-attention mechanism is more sensitive to data
distribution shifts and may require additional architectural
modifications or extensive data augmentation, introducing
unnecessary overhead for this task. These findings further
support FiILM as a lightweight yet effective method for inte-
grating adaptation embeddings into the world-action model.

9. Simulation Assets and Setup

Our simulation setup is shown as Figure 9. We sample 323
objects from the DexGraspNet dataset as training set and 10
objects as test set, as shown in Figure 10, 11. To sample sta-
ble poses for training, we drop the objects in a simulation
and extract the poses after stabilization. In 80% of the trials,

we drop the object 0.2 m above the table in a uniformly ran-
dom orientation. In the remaining 20%, we drop the objects
from their canonical orientations, to increase the chance of
landing in standing poses, as they are less likely to occur
naturally. If the object remains stationary for 10 consec-
utive timesteps, and its center of mass projects within the
support polygon of the object, then we consider the pose
to be stable. We repeat this process to collect at least 128
initial candidates for each object, then keep the unique ori-
entations by pruning equivalent orientations that only differ
by a planar rotation about the z-axis.

Hyperparameter Value
Learning rate 6e-4

Num. Environment 1024
Optimizer Adam
Normalization Layernorm
Dropout 0

Table 7. Hyper-parameters for Student’s Training Algorithm

Hyperparameter Value

Input Size (512, 3)
Key points C; [64, 16]
Grouping Neighbours K 32

Grouped feature M; [32, 128]

Global points MLP MLP(4096, 1024, 1024, 4096)
History length 5

History Decoder Conv1d+MaxPool

History Decoder channel 128

FiLM block Num 3

Pose Predictor Shared MLP(4096, 256)

Translation predictor MLP(256, 128, 64, 3)
Rotation predictor MLP(256, 128, 64, 3)
Actor MLP(4736, 1024, 256)

Table 8. Hyper-parameters for Student’s Encoder and Policy

Hyperparameter Value
RL algorithm PPO
Adam stepsize 3e-4

Num. Environment 4096
GAE parameter 0.95

Discount Factor 0.99
PPO clip range 0.3
Num. epoch 8

Table 9. Hyper-parameters for Teacher’s PPO Algorithm
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Figure 10. Objects used for training in the simulation benchmark.
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Figure 11. Unseen objects used for evaluation in the simulation
benchmark.

Hyperparameter Value

Key points C; [16]

Grouping Neighbors K 32

Grouped feature Channels M;  [128]

Shared MLP MLP(512, 256, 128)
Actor MLP(64, 20)

Critic MLP(64, 1)

Table 10. Hyper-parameters for Teacher’s Encoder and Policy

10. Vision Encoder

We use a simplified version of PointNet++ [41] as our
point cloud encoder. Specifically, the student policy en-
coder employs two layers of fixed-scale grouping, while the
teacher policy encoder uses one layer. In the i*" group-
ing layer, C; key points are selected via farthest point sam-
pling (FPS), and each key point forms a group with its K
nearest neighbors (KNN). Each cluster is then processed
by two per-point MLP layers and two global MLP layers
to generate a group feature. The output point cloud con-
sists only of the C; selected key points, each enriched with
its corresponding Mj;-dimensional group feature. After the
grouping layers, the per-point features are concatenated and
passed through residual MLP layers, following the structure
of PointNet++. The final output consists of several point to-

kens with grouped features.

11. Hyper-parameters

The following Tables 7, 8, 9, 10 demonstrate the hyper-
parameters of our policy and the teacher policy.



Figure 12. Qualatative results in the simulation.
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