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Supplementary Material

1. Overview
The supplementary material is structured as follows:
• Sec. 2 includes optical basics: what are optical flows and

warping.
• Sec. 3.1 contains PSNR/SSIM evaluated on our selected

datasets.
• Sec. 3.2 contains additional qualitative results.
• Sec. 4.1 contains implementation details.
• Sec. 4.2 contains additional details on 3D wavelet trans-

forms.
• Sec. 4.3 contains the proof to our proposition in Sec. 3.3

of our main paper.

2. Optical Flow Basics
Optical flow is the pixel-wise movement from frame to
frame. If we have two images I0 and I1, and for a given
pixel I0[i, j] the corresponding pixel appears in I1 I1[i

′, j′]
then flow(I0, I1)[i, j] is [i′− i, j′− j], indicating the pixel
movement. Warping is to move each pixel according to
the movements defined by optical flows. Importantly, op-
tical flows do not explicitly estimate the motion speed, and
motion speed is implicitly contained in training data. If all
training data consists of constant speed motion, and the test
data contains motion speed that is not evenly distributed be-
tween two frames, the predicted position will not align. This
would be an interesting research problem but out of scope
of our research. An example is the third row of Fig. 3 in
our main paper, where our method and PerVFI predict ba-
sically the same location but the ground truth location is
different. One possible explanation is that the vehicle is
accelerating, but the location that our method and PerVFI
predicts is based on a constant speed. As a result, at the
first half of the time interval between I0, I1, the vehicle is
slow so the ground truth is closer to the first frame, while
our method and PerVFI make it approximately right in the
middle.

3. Additional Results
3.1. Results in PSNR/SSIM
We include the results in PSNR/SSIM on our selected
datasets in Tab. 1. We can see that PSNR/SSIM tends to
be unstable and not correlated to visual qualities for meth-
ods in 2024. For example, our method underperforms Con-
sec. BB in Xiph [9] dataset but our visual comparisons
and LPIPS/FloLPIPS/FID indicate that our method is better.

Similarly, PerVFI underperforms Consec. BB in Xiph-2K,
but its LPIPS/FLoLPIPS/FID is much better.

3.2. Additional Qualitative Results

More Input Frames. Our method is highly flexible and can
take more than three input frames in one forward call. An
example is shown in Fig. 1, where our model can receives
five frames I0, I1, I2, I3, I4 and treat either I2 or I1, I3 as
target. This enables us to do only one run of the sampling
process for the second scenario, where LDMVFI [2] and
Consec. BB [8] needs to sample twice. To achieve this, we
only need to replace the second and fourth frames by zeros
and send the video clip to the autoencoder, and the diffusion
model only needs one sampling process to obtain latents for
the decoder. However, LDMVFI and Consec. BB needs to
sample frame 2 and 4 separately.

Additional Visual Comparisons. We include additional
visual comparisons in Fig. 3 and Fig. 4, where examples are
selected from SNU-FILM extreme [1], DAVIS [10], and
Xiph-4K [9]. Our method achieves the best visual qual-
ity. Other methods exhibit distortion, blurring, or artifacts
in their generation, but our method does not. Red circles
and squares emphasize the area where our method achieves
better quality. We encourage reviewers to do 500% zoom-in
to see the results as many results contain multiple details in
one frame.

8× Interpolation. 8× interpolation is interpolating 7
frames between I0, I1, which can be done iteratively. When
motion change is large, 2× interpolation does not provide a
good video clip and therefore we need to interpolate more
frames. We include two examples of 8× interpolation re-
sults in Fig. 5 just for reference. It is better to visualize
8× with videos, and therefore we include more examples
compared with more methods in our Project Page. 8× in-
terpolation is to interpolate 7 intermediate frames between
I0 and I1 (i.e. only first and last frames are provided),
which can be done iteratively. The upper example is taken
from DAVIS [10] and the latter one from Xiph-4K [9]. The
Project Page contains results from SNU-FILM extreme [1],
DAVIS [10], and Xiph-4K [9]. In the upper examples of
Fig. 5, bicycle tires interpolated by PerVFI [15] are missing
in some frames. In the lower example, the woman’s right
eye becomes an artifact in PerVFI.

Flow visualization. We visualize the optical flow
from interpolated results (În) to neighboring frames I0, I1,
shown in Fig. 2. Our primary contribution is the temporal
aware latent Brownian Bridge diffusion framework instead
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(a) Given two frames before and two frames next, predict the intermediate frame.

(b) Given three frames, predict frames between each adjacent frame pair.
Figure 1. (a) Given four neighboring frames I0, I1, I3, I4, we can predict the intermediate frame I2. (b) Given a sequence of frames I0, I2, I4, we can
predict the intermediate frame between each adjacent pair I1, I3.

Table 1. Quantitative results (PSNR/SSIM) on test datasets (the higher the better).OOM indicates that the inference with one image exceeds
the 24GB GPU memory of an Nvidia RTX A5000 GPU.

Methods Xiph-4K Xiph-2K DAVIS SNU-FILM

easy medium hard extreme
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

MCVD’22 [14] OOM OOM 18.946/0.705 22.201/0.828 21.488/0.812 20.314/0.766 18.464/0.694
VFIformer’22 [7] OOM OOM 26.241/0.850 40.130/0.991 36.090/0.980 30.670/0.938 25.430/0.864

IFRNet’22 [5] 33.970/0.943 36.570/0.966 27.313/0.877 40.100/0.991 36.120/0.980 30.630/0.937 25.270/0.861
AMT’23 [6] 34.653/0.949 36.415/0.967 27.234/0.877 39.880/0.991 36.120/0.981 30.780/0.939 25.430/0.865

UPR-Net’23 [3] 33.647/0.946 36.749/0.967 26.894/0.870 40.440/0.991 36.290/0.980 30.860/0.938 25.630/0.864
EMA-VFI’23 [16] 34.698/0.948 36.935/0.967 27.111/0.871 39.980/0.991 36.090/0.980 30.940/0.939 25.690/0.866
LDMVFI’24 [2] OOM OOM 25.073/0.819 38.890 0.988 33.975/0.971 29.144/0.911 23.349 0.827
PerVFI’24 [15] 32.395/0.926 34.741/0.953 26.502/0.866 38.065/0.986 34.588/0.973 29.821/0.928 25.033/0.854
Consec.BB [8] 32.153/0.927 34.964/0.956 26.391/0.858 39.637/0.990 34.886/0.974 29.615/0.929 24.376/0.848

Ours 32.441/0.928 35.748/0.959 26.272/0.860 39.460/0.990 35.308/0.977 29.529/0.929 24.513/0.847

of advancements in optical flows in other works [6, 15, 16],
so we directly adopt the flow estimation architecture from
Consec. BB [8]. Though the flow estimator is the same
architecture as Consec. BB, our temporal design can im-
plicitly improve it through back-propagation (see first and
third row).

4. Additional Details

4.1. Implementation Details

Flow Estimator. Optical flow estimation is not our research
purpose, so we use the same architecture of flow estima-
tor in Consec. BB [8] and trained together with our au-
toencoder. The code for differentiable warping is available
at [7, 8].

Autoencoder. The autoencoder is based on the VQ ver-
sion of LDM [11]. It consists of 5 levels of image encoder
and decoder, resulting in a 32× downsampling rate. Image
decoders contain output channels of 64,128,128,128,256,

respectively (reverse for decoder). Between the image en-
coder and decoder, there are four 3D convolutions with spa-
tiotemporal attention (the last one is cross-attention) [13],
where a VQ-Layer is inserted after the second 3D conv +
attention. The channel dimension is 256. The VQ-Layer
quantizes features into 3 channels. To predict masks M and
residual ∆, we use sigmoid activation to normalize the out-
put. The autoencoder is trained with Adam optimizer [4]
and a learning rate of 10−5 for 35 epochs. The training loss
is L1 loss and LPIPS loss, following LDM.

Brownian Bridge Diffusion. The Brownian Bridge Dif-
fusion is implemented with 3D denoising U-Net [11] with
channel dimension 32 and 3 downsample blocks as well as
3 upsample blocks, where the optimizer is Adam [4] with a
learning rate of 10−4 and the model is trained for 50 epochs.
The T for the diffusion process is set to 2. The training loss
is MSE loss.

The training algorithm is shown in Algorithm 1, and the
sampling algorithm is shown in Algorithm 2.
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Figure 2. Visualization of optical flows.

Algorithm 1 Diffusion Training Algorithm

1: Let E be the encoder part of our autoencoder.
2: for i = 1 to Ntraining steps do
3: Sample t ∼ ContinuousUniform(0, T ).
4: Sample [I0, In, I1] from Dataset.
5: x0 = E([I0, In, I1]).
6: Compute xt with Eq. (5) in the main paper.
7: Take gradient step on MSE(ϵθ(xt), xt − x0)
8: end for

Algorithm 2 Diffusion Sampling Algorithm

1: Let E be the encoder part of our autoencoder.
2: Initialize t = T, xt = E([I0, 0, I1])
3: while t > 0 do
4: Predict xt − x0 with ϵθ(xt)
5: Sample xs with Eq. (6) in the main paper.
6: t← s, xt ← xs

7: end while

4.2. 3D Wavelet Details
The 3D wavelet transform can be considered as a con-
volution layer with two types of filter: high-pass filter
[ 1√

2
,− 1√

2
] and low-pass filter [ 1√

2
,− 1√

2
].The input videos

(with 3 frames) are converted to grayscale, and filters
are applied in height, width, and temporal dimensions
respectively. There are 8 different combinations of filters:
[HHH,HHL,HLH,HLL,LHH,LHL,LLH,LLL],
corresponding to height, width, and temporal dimensions.
We use “same padding” along height and width to keep
the feature map size unchanged and use “no padding”

along the temporal dimension, both with a stride of 1.
Therefore, after the first extraction, it provides 8 different
feature maps, where each feature map contains 2 temporal
channels (the convolution reduces the temporal dimension
by 1). The LLL is further extracted, resulting in 8 feature
maps with only 1 temporal dimension. Feature maps other
than LLL are concatenated in the temporal dimension,
and we consider the temporal dimension as “channels” for
model input to extract latent features. Therefore, we have a
feature map with 21 channels as input.

4.3. Proof
We include the proof of our proposition in Sec. 3.3 of the
main paper here:

Proof. If H0 is rejected, then it is statistically significant to
conclude that xT −x0 ̸= 0. Therefore, we can use a simple
induction to prove this. Recall that we have the diffusion
and sampling processes defined as:

q(xt|x0,xT ) = N
(

t

T
x0 + (1− t

T
)xT ,

t(T − t)

T
I

)
. (1)

pθ(xs|xt,xT ) = N
(
xt −

∆t

t
(xt − x0),

s∆t

t
I

)
. (2)

1. Based on Eq. (2) in the main paper, suppose that at a
given time step t, xt − x0 ̸= 0, then the expectation
of sampled latent at any previous step s is E(xs|xt) =
s
t (xt − x0) + x0.

2. By the inductive assumption, E(xs|xt) = x0 + δ, where
δ ̸= 0 ⇐⇒ E(xs|xt) ̸= x0.

3. Then, on expectation, we conclude that xs|xt ̸= x0.
Note that this is especially important in DDIM [12] sam-
pling because the variance term is removed, in which
case we can directly conclude that xs|xt ̸= x0 without
expectation.

4. Therefore, we can prove this proposition by the above in-
duction because the sampling process is discretized into
finite steps.

As a result, the sampling process is not an identity map.

On the other hand, the sampling process is trivial because
it does not change the expectation, which can be achieved
with an identity map.
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Figure 3. Additional qualitative comparison between our method and recent SOTAs. The leftmost image is the overlaid image of I0 and I1 (blended
image). Images inside blue boxes contain drastic motion changes and are cropped out to show details of interpolation results. Red circles, boxes, and arrows
indicate the area where we significantly perform better. Our method achieves better visual quality than recent SOTAs.
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Figure 4. Additional qualitative comparison between our method and recent SOTAs. The leftmost image is the overlaid image of I0 and I1 (blended
image). Images inside blue boxes contain drastic motion changes and are cropped out to show details of interpolation results. Red circles, boxes, and arrows
indicate the area where we significantly perform better. Our method achieves better visual quality than recent SOTAs.
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Figure 5. Visual comparison of 8x× interpolation results. We include a visual comparison of 8× interpolation between our method and PerVFI. Red
arrows indicate where our method is visually better. Additional comparisons (in video form) are provided in our Project Page.
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