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Supplementary Material

We provide supplementary technical details and experi-
mental results in the following sections:
• Sec. 7 presents a unified theoretical framework for In-

vMM within the context of diffusion model, including
detailed analyses of noise distribution and prompt distri-
bution reparameterization.

• Sec. 8 includes additional experimental details and results
complementing to the main paper. Specifically, results in
Sec. 8.5 provides more evidence to demonstrate the dif-
ference between membership and memorization.

• Sec. 9 gives a comprehensive ablation study on the
prompt inversion in text-guided DMs. The experiments
clarify the influence of temperature, CFG scale, inversion
objective and adaptive algorithm on prompt inversion.

• Sec. 10 shows generation results using inverted noise and
prompts on various datasets and models.

7. Additional technical description
7.1. A unified understanding
Similar to Eq. (2), the variational lower bound can be
further lower bounded w.r.t. a conditional distribution
qϕ(c,x0) with parameters ϕ. For text-to-image models, it
is instantiated as a prompt distribution qϕ(ω|x0).

Following similar expansion in Eqs. (3) and (4), we ob-
tain the full inversion variational lower bound w.r.t. both
condition and latent noise:

log pθ(x0) ≥ −lde(x0;ϕ,φ)− lkl(x0;φ)− lcr(x0;ϕ)
(13)

and

lde(x0;ϕ,φ) = −Eqϕ(c|x0),qφ(ϵ0|x0) [log pθ(x0|x1, c)

+

T∑
t=2

DKL(qφ(xt−1|xt,x0) ∥ pθ(xt−1|xt, c))]

(14)

lkl(x0;φ) = DKL(qφ(xT |x0) ∥ p(xT )) (15)
lcr(x0;ϕ) = DKL(qϕ(c|x0) ∥ p(c)) (16)

where lde indicates the denoising error, lkl is a KL diver-
gence and lcr is a condition regularization term. The three
terms can be explained as the following:
1. lde indicates how accurate the pretrained model de-

noises each xt when the added noise is drawn from
qφ(ϵ0|x0). If lde is low enough, then for most noises
ϵ0 ∼ qφ(ϵ0|x0) the model presents low denoising er-
ror, we can anticipate that the sampling trace starting at
ϵ0 ∼ qφ(ϵ0|x0) will head towards x0 and finally gener-
ate x0.

2. lkl is a normality regularizer. When lde is optimized to
a low level, the noise distribution qφ(ϵ0|x0) identifies a
sensitive set of noises that will cause the generation of
the training image x0. p(xT ) is the prior distribution,
usually set to the standard Gaussian. In a sense, lkl mea-
sures the diversity of the model’s generation: When lkl
becomes zero, i.e., qφ(ϵ0|x0) is standard Gaussian, then
low enough lde means the model always generates x0

and loses generalization.
3. lcr encourages the realistic feasibility of the condition

distribution qϕ(c|x0). For example, if p(c) is consid-
ered the distribution of natural language, then minimiz-
ing lcr indicates that prompt c ∼ qϕ(c|x0) should be
grammatically and semantically correct.
In the standard training of diffusion model (DM), lkl

is ignored because qφ(ϵ0|x0) is set to the standard Gaus-
sian N (0, I) such that qφ(xT |x0) approximately equals
N (0, I), lkl approximately equals zero. qϕ(c|x0) reduces
to several captions coupled with the training image such that
lcr is also zero.

Our idea is to measure memorization by relaxation of
the noise and prompt distribution so that the denoising
error can be optimized low enough to replicate the target
image. Based on this, the normality of the worst-case
distribution of sensitive latent noise is used as a measure.

7.2. Reparameterization
Sampling from the noise and condition distribution
in Eq. (14) is non-differentiable, we indirectly sample them.

When the noise distribution is qφ(ϵ0|x0) a multivariate
Gaussian N (µ,σ2) with learnable mean µ and diagonal
variance σ2,

ϵ0 = ϵ′σ + µ, ϵ′ ∼ N (0, I) (17)

For text-to-image DM, each token ωi (see Sec. 4.4) is
reparameterized by

ω̃i,j =
exp ((logπi,j + gi,j)/τ)∑|V|

k=1 exp ((logπi,k + gi,k)/τ)
(18)

where {gi,j}, i = 1...M, j = 1...|V| are i.i.d samples drawn
from Gumbel(0, 1), τ is a temperature factor. When τ ap-
proaches 0, the smoothed sample ω̃i becomes one-hot.

After optimization, we can draw discrete prompt from
the learned qϕ(ω|x0) by:

ωi = argmax
j

[logπi,j + gi,j ] (19)



CIFAR-10 CelebAHQ FFHQ LAION

Learning Rate γ 1e-1 1e-1 1e-1 1e-1
Iteration T 2000 2000 2000 2000
Batch Size 32 16 16 16
Cycle C 50 10 10 50
Increment δ 1e-4 5e-4 5e-4 1e-3
Threshold ξ 1e-3 1e-3 1e-3 1e-3
Threshold β 1.0 1.0 1.0 1.0
Sampler DDIM [53] DDIM DDIM DDIM
DDIM Step 200 50 50 50
DDIM η 0 0 0 0
Optimizer Adam [28] Adam Adam Adam
SSCD Size 32×32 256×256 256×256 320×320

Table 2. Default hyperparameter settings.
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Figure 11. Training epoch vs. memorization on CelebAHQ.

8. Additional experiment details and results
8.1. Experiment setting
If not stated otherwise, the hyperparameters follow the de-
fault setting listed in Tab. 2, determined by previous inves-
tigation [51] and a few case studies. For CelebAHQ and
FFHQ, all memorization scores in the plots are evaluated
on CelebAHQ-250 and FFHQ-600. SD v3.5 utilizes three
text encoders to represent the input prompt: CLIP-L, CLIP-
G and T5. It is computationally expensive, so we only invert
CLIP-L, with CLIP-G and T5 frozen. All the experiments
in this paper are conducted on one NVIDIA A800 GPU.

8.2. Influence factors
Figure 11 shows the influence of training epochs on Cele-
bAHQ. Larger training epochs lead to heavier memoriza-
tion.

8.3. Detection
Experiment details. On CIFAR-10, the training loss met-
rics are calculated on the average loss of 16 random Gaus-
sian noise and 50 timesteps uniformly sampled within the
range [1, 1000]. Following van den Burg et al. [55]’s set-
ting, MLOO is estimated using a 10-fold cross-validation.

On LAION, the training loss metrics use 32 random
Gaussian noise and 50 timesteps uniformly sampled within
the range [1, 1000]. We implement Wen et al. [61] and

Figure 12. Not invertible examples in SD v1.4. The first column
shows the corresponding training images.

Ren et al. [42] following their best performing settings.
For GCG [64] attack, the number of optimizable tokens
is 20. Each token is initialized to the special token <
|endoftext| >. GCG is ran for 500 steps with a batch size
of 128 and a top-k of 256. During optimization, the noise
distribution is fixed to the standard Gaussian. A minibatch
of 16 random noises is used to calculate the x0-loss every
iteration. After each update, 8 random samples are gener-
ated. If any of them has a similarity with the target image
no less than 0.5, the optimization process will stop.

Calibration. SSCD similarity on the low-resolution
CIFAR-10 yields many false positives (non-replication with
high similarity, early stopped) and false negatives (repli-
cation with low similarity, not early stopped), although it
works well on the other three high-resolution datasets. We
perform a manual review on the false samples and correct
their early stop timesteps and scores. All the other experi-
mental results are unhandled.

Invertibility. More than half of the images in CIFAR-10
are not invertible even if we set λ = 0 all the time. This is
probably because the DDPM (34.21 M) trained on CIFAR-
10 has limited capacity to memorize every training image.
Images in CelebAHQ and FFHQ are all invertible. As a
comparison, the LDMs trained on them have larger capac-
ity (314.12 M). There are also some images not invertible in
Stable Diffusion. However, setting λ = 0 could invert them
almost perfectly. The invertibility of an image is specific
to a set of hyperparameter settings. Although it is possible
to invert everything in SD, we regard samples not invertible
in our setting “insignificant”, as compared to those that are
easy to invert. Figure 12 shows three examples that are not
invertible in SD v1.4 from the normal subset, as judged by
SSCD. It shows that it is quite subjective to judge the sim-
ilarity between images. Human may regard such cases as
replication as the generated images mimic the style of train-
ing image or else. From a technical perspective, we leave
this problem untouched and follow the decision of SSCD.

Adversarial prompts. Figure 13 shows additional ex-
amples of adversarial prompts found by GCG for images
from the suspicious set, which have lower InvMM scores.



Setting CelebAHQ-250 CelebAHQ-2.5k FFHQ-600 FFHQ-6k CelebAHQ FFHQ

Default N/A(0) N/A(0) N/A(0) N/A(0) N/A(0) N/A(0)
Epoch ×2 0.059(9) N/A(0) N/A(0) N/A(0) - -
Epoch ×3 0.326(120) N/A(0) 0.000(1) N/A(0) - -
Epoch ×4 0.567(181) 0.000(3) 0.000(4) N/A(0) - -
Duplicate ×5 - 0.182(65) - 0.000(2) - -
Duplicate ×10 - 0.852(237) - 0.192(186) - -
Duplicate ×15 - 0.937(245) - 0.401(323) - -
Duplicate ×20 - 0.819(231) - 0.434(375) - -

Table 3. Performance of collating InvMM with nearest neighbor test. Each result refers to IoU(Number of replicated training images).

Prompt:
<|endoftext|><|endoftext|>mappe
d<|endoftext|>german<|endoftext|
>upon öhercules major 
<|endoftext|>françneu<|endoftext|
><|endoftext|><|endoftext|><|end
oftext|>gigiincluded<|endoftext|>

Prompt: <|endoftext|>et 
<|endoftext|><|endoftext|><|en
doftext|><|endoftext|>space<|e
ndoftext|>testanalyzing
moonshouldn
<|endoftext|>teamusa
<|endoftext|><|endoftext|><|en
doftext|><|endoftext|><|endofte
xt|><|endoftext|>

Figure 13. Additional examples of adversarial prompts found by
GCG.

8.4. Collate InvMM with nearest neighbor test
We provide another quantitative metric to collate InvMM
with the nearest-neighbor test: if a training image is repli-
cated by its nearest neighbors in randomly generated sam-
ples, then its InvMM should be small among a list of train-
ing images, and vice versa. Let Snn be the set of images
that expose replication in randomly generated samples, and
SInvMM be the same-size set of images with the lowest In-
vMMs in a list of images. We define the consistence be-
tween InvMM and nearest-neighbor test as the Intersection
over Union (IoU) between SInvMM and Snn:

IoU =
|SInvMM ∩ Snn|
|SInvMM ∪ Snn|

, |Snn| > 0 (20)

Under the setting in Sec. 5.4, InvMM achieves an IoU
of 0.817 on CIFAR-10 and 1.0 on LAION. The results on
CelebAHQ and FFHQ are summarized in Tab. 3. 10k ran-
dom samples are used to obtain the results. A random sam-
ple of cosine similarity larger than 0.5 with any training
sample is considered a replication. InvMM presents con-
sistence with the results of nearest neighbor test, indicating
its potential to expose risk of training image leakage, espe-
cially when a large number of training images are prone to
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Figure 14. Comparison of replication loss for members and hold-
out samples.

leakage. The 10k samples are not an adequate sampling of
the large latent space (64×64×3), the performance can be
refined with a larger scale of evaluation.

8.5. Comparison to membership
Experiment details. Figure 10 is evaluated with LDM
trained on FFHQ-6k. FFHQ-600 is used as the member set
and another 600 images not contained in FFHQ-6k consti-
tute the hold-out set. The statistic variant of SecMI is im-
plemented following their official settings, with tSEC = 100
and k = 10.

Results. Figure 14 provides quantitative evidence that
different samples could be replicated with different levels of
training loss. The replication loss is calculated over the in-
verted latent noise distribution. It shows that although hold-
out samples have a larger training loss over the N (0, I),
supporting effective membership inference, it is still possi-
ble to replicate some of them by reducing their training loss
to a level higher than some of the members.

We visualize the top-2 false positives and false negatives
in Fig. 15. The results show that hold-out samples are also
replicated near identically.



Figure 15. Top-2 false positives with lowest InvMM from the hold-
out set and top-2 false negatives with highest InvMM from the
member set. The results come from LDM trained on FFHQ-6k for
1784 epochs.

Training Caption: Emma Watson to play Belle in Disney's 
<i>Beauty and the Beast</i>

Training Caption: Watch Conan Get Destroyed by a 
Sharktopus

Training Caption: Spring Thaw - Charles White Training Caption: Digital Painting - Adriana Lima

Training Caption: The greatest photos ever? Why the moon 
landing shots are artistic masterpieces

Training Caption: Director Danny Boyle Is Headed To TV 
With FX Deal

Generated Images Generated ImagesTraining Image Training Image

Figure 16. Examples in confirmed, suspicious and normal subsets
from top to down. In each block, the right two columns show
generated images using their training captions but different initial
noises.

The result further highlights the difference between
membership and memorization: training loss does not
completely determine data replication.

9. Ablation study on prompt inversion

This section elaborates the influence of several factors for
prompt inversion in SD, including the temperature τ in
Gumbel-Softmax, the Classifier-Free Guidance (CFG) [21]
scale γ and the advantage of predicting the image rather
than noise for inversion (Eq. (12)). For this goal, the noise
distribution is temporarily fixed to the standard Gaussian.
Experiment results will show that heavily memorized im-
ages can also be uncovered in this setting.

9.1. Dataset

We use the aforementioned three LAION subsets for eval-
uation. Figure 16 presents examples from the three sub-
sets, together with images generated using their training
captions.

0.1 0.1(dct) 0.5 0.5(dct) 1.0 1.0(dct) 2.0 2.0(dct)
Temperature

0.1

0.2

0.3

D
en

oi
si

ng
 E

rro
r

0.1 0.1(dct) 0.5 0.5(dct) 1.0 1.0(dct) 2.0 2.0(dct)
Temperature

0.1

0.2

0.3

D
en

oi
si

ng
 E

rro
r

0.1 0.1(dct) 0.5 0.5(dct) 1.0 1.0(dct) 2.0 2.0(dct)
Temperature

0.2

0.3

D
en

oi
si

ng
 E

rro
r

Figure 17. The distribution of denoising error of the confirmed,
suspicious and normal subsets. ”dct” means plus discretization.

9.2. Experiment setup
We utilize SD v1.4 for evaluation, which uses CLIP [40] to
encode input prompts and generate high-resolution 512 ×
512 images. The text encoders by default accepts a maxi-
mum length of 77 tokens, in which the first and last tokens
are padded tokens indicating the start and end of a prompt.
The rest 75 tokens are all optimized in our experiments.
During optimization, the parameters θ of diffusion models
are fixed. We optimize for 500 iterations with a constant
learning rate of 0.2. ϕ is initialized to 0 at the begining of
optimization.

9.3. Influence of temperature
Hard prompt inversion to exactly reconstruct certain images
is a challenging problem as it requires to search over a large
and discrete space consisting of tens of thousands of to-
kens (49408 in CLIP). We have found that the convergence
of inversion relies on appropriate choice of the temperature
τ in Gumbel-Softmax smoothing. With τ approaching 0,
ω̃ drawn from the prompt distribution approaches one-hot
and accurately matches a token, while it is difficult to opti-
mize through gradient decent. Larger τ provides a smoother
landscape of the target loss function and thus is easier to
optimize. However, the smoothed ω̃ cannot directly corre-
spond to some tokens. Discretizing them anyway (Eq. (19))
might not preserve the same effectiveness as the smooth
counterparts.

Denoising error. We first analyze the denoising error of



the inverted prompt distribution when optimized with differ-
ent temperatures. We consider 4 settings for the temperature
to be either 0.1, 0.5, 1 or 2, as well as whether to discretize
the smoothed tokens ω̃ to ω. After optimization, ran-
dom prompts and noises can be drawn from qϕ(ω|x0) and
N (0, I). For each image, we randomly sample 10 prompts
and 10 noises for each sampled prompt, resulting in 100
prompt-noise pairs. The denoising error is estimated using
50 timesteps uniformly sampled within the range [1, 1000]
and averaged over the 100 prompt-noise pairs.

The results can be seen in Fig. 17. For any type of im-
age from different groups, higher temperatures lead to lower
denoising errors on average, indicating a more adequate op-
timization. However, meanwhile, plus token discretization
worsens the effectiveness.

Convergence. Figure 18 shows the denoising errors at
each optimization step of the 6 example images in Fig. 16.
For the assessment of convergence, we draw a baseline de-
noising error calculated using the training caption of each
image. As can be observed, large temperatures induce bet-
ter convergence and the difference between ω̃ and ω be-
comes prominent. Figure 19 illustrates the generation re-
sults using prompts sampled from the learned distribution,
with a CFG scale of 7. As can be seen, with τ = 2, the in-
verted prompts are able to replicate the training images for
the 4 examples from the confirmed and suspicious groups,
the two from the suspicious group are newly found through
our analysis. However, τ = 2 plus discretization produces
completely irrelevant images. Lower temperatures 0.5 and
1.0 present more consistent generation between smooth and
discrete prompts, while they only produce similar images
to the training ones, showing analogous content, color, etc.
The smallest τ = 0.1 fails to capture the main content of
the training images but remains the best consistency for dis-
cretization.

Prompt distribution. Figure 20 depicts the density dis-
tribution of the entropy −

∑|V|
j=1 πi,j logπi,j of the learned

prompt categorical distributions. When τ = 2, most to-
kens follow a high entropy distribution, which means that
they are well smoothed and take an interpolation of hard to-
kens. In contrast, smaller temperatures produce more sharp
distributions, while less effective as large temperature for
inversion.

Conclusion. For the goal of effective analysis, we adopt
a compromise setting with the temperature τ of 2.0 and
without discretization, to reach adequate optimization. Al-
though this violates the goal of inverting realistic prompts,
it is reasonable and enough for developers to analyze the
vulnerability of their models. Note that it still offers a
certain level of restriction to the learned soft prompts, as
the Gumbel-Softmax approximation together with a lin-
ear combination of pretrained token embeddings bound the
smoothed tokens ω̃ in the convex hull of the pretrained to-

kens.

9.4. CFG Scale
In additional, we sweep the CFG scale γ from 0 to 7 with in-
terval 1 to study its influence. γ = 0 indicates unconditional
generation and γ = 1 indicates conditional generation with-
out penalizing unconditional prediction. The generation re-
sults of the examples in Fig. 16 are shown in Fig. 21.

It can be observed that the generated images with γ = 0
are quite random because they only depend on the random
initial noises. When γ ≥ 1, for heavily memorized im-
ages in the confirmed and suspicious group, the genera-
tion results progressively converge to the training images.
At times the generated images with small CFG scale only
resemble the training images but are not eidetic, e.g., the
2rd to 4th rows. Nonetheless, we also discovered perfect
replication for these examples with a small γ = 1 gen-
erated using other different initial noises. This indicates
that the extent to which different training images are mem-
orized varies, and, moreover, a relatively low-level training
time memorization (γ = 1) can be amplified by sampling-
time options such as larger γ. Given that we optimize the
prompts w.r.t. the conditional model (γ = 1), it demon-
strates that training data leakage roots in the conditional
model.

In addition, a gradual sharpening can be observed in the
generated images as the guidance scale increases. As we
optimize w.r.t. the conditional model, i.e., γ = 1, it is
of enough denosing accuracy to generate an training im-
age with relatively lower scales. Enlarging the conditional
scale, however, results in excessive alignment with the input
prompt. In contrast, for the images in the normal group (see
the last two rows of Fig. 21), as the inverted prompt distri-
bution cannot fully capture its complete content, generation
with γ = 1 is somewhat fuzzy. It thus benefits from an
increase of γ for higher quality.

Conclusion. Training data memorization can be ampli-
fied by CFG scale. As we consider the worst-case memo-
rization in this paper, we count in the replication caused by
any CFG scale from 1 to 7.

9.5. Optimization Objective
As we adopt the modified x0-prediction objective different
from the original ϵ0-prediction objective of the diffusion
models used in our experiments, we verify the effectiveness
of x0-prediction over ϵ0-prediction for inversion. We eval-
uate using the images in the confirmed set to determine if
the ϵ0-prediction can successfully replicate them. Figure 22
shows the inversion results of ϵ0-prediction. Inverison with
ϵ0-prediction is much unstable compared to x0-prediction,
which demonstrates the importance of reweighting denois-
ing error at different timesteps. More specifically, the later
timesteps at training time (ealier at sampling time) tend to
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Figure 18. Training denoising error of examples from each group under different temperatures, smoothed via exponential moving average
with a momentum of 0.99. ”dct” means plus discretization. The black dashed line is the baseline error calculated using their training
captions over 1600 randomly sampled Gaussian noises.

Figure 19. Generation results of different temperatures. The first
column shows the corresponding training images.
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Figure 20. Entropy density distribution of the prompt categorical
distribution.

shape the large scale image features [22], e.g., shape, ob-
ject. Therefore, it would be beneficial to upweight the later
timesteps by x0-prediction to more accurately guide diffu-
sion models to generate the corresponding training images.

Conclusion. Although not aligning with the original
training objective, x0-prediction is more stable for inver-
sion.

Figure 21. Generation results of different classifier-free guidance
scales. The first column shows the corresponding training images.

Figure 22. Inversion results of ϵ0-prediction. The first column
shows the corresponding training images.

9.6. Adaptive algorithm
A comparison of the (1) training error (using training cap-
tions), (2) inversion error with only prompt distribution
learned, (3) inversion error with both prompt and noise dis-
tributions learned, fixing λ = 1 and (4) inversion error with
both prompt and noise distributions learned, dynamically
adjusting λ by Algorithm 1, is shown in Fig. 23. Com-
pared to the training error, (2) only reduces that of heavily
memorized images for which the input prompts plays a cru-
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Figure 23. Comparison of inversion denoising error under differ-
ent settings on SD v1.4.

cial role. (3) further reduces the denoising error but cannot
work for all samples. Algorithm 1 can successfully reduce
the denoising error of any training samples by adaptively
adjusting the weight of normality regularization.

10. More generation results
Figures 24 to 33 show more generated images using in-
verted noise vectors (and prompts).



Figure 24. Random samples of SD v1.4 inversion on the confirmed subset. The first column shows the corresponding training images.



Figure 25. Random samples of SD v1.4 inversion on the suspicous subset. The first column shows the corresponding training images.

Figure 26. Random samples of SD v1.4 inversion on the normal subset. The first column shows the corresponding training images.



Figure 27. Random samples of SD v2.1 inversion on the confirmed subset. The first column shows the corresponding training images.



Figure 28. Random samples of SD v2.1 inversion on the suspicous subset. The first column shows the corresponding training images.

Figure 29. Random samples of SD v2.1 inversion on the normal subset. The first column shows the corresponding training images.



Figure 30. Random samples of SD v3.5 inversion on the confirmed subset. The first column shows the corresponding training images.



Figure 31. Random samples of SD v3.5 inversion on the suspicous subset. The first column shows the corresponding training images.

Figure 32. Random samples of LDM inversion on CelebAHQ. The first column shows the corresponding training images.



Figure 33. Random samples of LDM inversion on FFHQ. The first column shows the corresponding training images.


