DCHM: Depth-Consistent Human Modeling for Multiview Detection

Supplementary Material

Algorithm 1 Multi-view Label Matching

Algorithm 3 Multi-view Unsupervised Localization

18:

R AN Al s

G: Set of optimized Gaussians from final training cycle
M": Set of pedestrian masks for each camera view v
V': View configuration of the current camera

Tuvis: Visibility threshold

function LABELMATCHING(G, M”, V, Tyis)
Gmask < RasterizeGaussianID(G, V)
for M} in M" do
if 3g € (Gmask N M) : g has ID then
c-id < MostFrequentID(G s N M)
AssignID(Gmase N M, M7, c-id)
else
n_id < GenerateNewID()
for all g in (Gask N M) do
w < ComputeBlendingWeight(g)
if w > 7,5 then
AssignID(Grask N M7, M{ ,n_id)
end if
end for
end if
end for
return G, M"
end function

Algorithm 2 Multi-view Clustering and Localization

AN

~

10:
11:
12:
13:
14:
15:
: end function

G- Set of Gaussians with assigned IDs

Teluster. Threshold for minimum number of Gaussians
e: DBSCAN epsilon parameter

minPts: DBSCAN minimum points parameter

. function CLUSTER(G, Teruster, €, minPts)

L+ {} > Initialize empty set of locations
for each unique ID i in G do
Gi+{ge@G:ghasIDi}
if |Gy > Tetuster then
C; + DBSCAN(G;, ¢, minPts) > Apply
DBSCAN clustering
for each cluster c in C; do
cnt. < ComputeCenter(c)
confe < |c| > Confidence is the number of

Gaussians
L + LU{(cntc,conf)}
end for
end if
end for
L + NMS(L) > Apply Non-Maximum Suppression
return L > Return final predicted locations

G: Set of optimized Gaussians from final training cycle
M": Set of pedestrian masks for all camera views v

V. Set of view configurations for all cameras

Tvis: Visibility threshold

Teluster: Minimum Gaussian count for each cluster

e: DBSCAN epsilon parameter

minPts: DBSCAN minimum points parameter threshold

1: for all camera V¢ in V do > Label matching

2. G, M?" + LabelMatching(G, M", V°, 7p;,)

3. end for

4: L + Cluster(é, Teluster, € MINPEs) > Clustering and
localization

Algorithm 4 Detection Compensation

r: Reference view (index) r

D: Predicted depth of camera view

K: Intrinsic matrix of camera view

Rt: Extrinsic matrix of camera view

I: Image of camera view

M?": Foreground mask of camera view

Tpes: Threshold for the number of valid projection points
Tm: Threshold for the proportion of projection points outside
the source view foreground mask

e: DBSCAN epsilon parameter

minPts: DBSCAN minimum points parameter threshold

1: function DETCOMP(r, D, K, Rt, I, M”, Tpcs, Tm, €, minPts)

2: for source view s in all cameras do
3: u’7" + Project(D®, K°, Rt°, M*", K", Rt") >
Source view projections on reference view r
4: 47" < DBSCAN(u®"", €, minPts) > Filter
outliers
5: if |2°7"| < Tpes them Continue
6: end if > Check projection count
7: if % > T,n, then Continue
8: end if > Skip on high overlap in new regions
9: bbox <+ BBox(a°~") > Get projection bounds
10: M™ + saM(a*7", bbox) > Initial mask
11: @77, bbox < Sample(M™) > Refine prompts
12: M™ + saM(@°7", bbox) > Final mask

13: end for
14: end function

6. Supervised localization

We conducted additional experiments to explore if our
depth-consistent human modeling can enhance label-based
methods.

Methodology. For supervised localization, we adopt the

Method Label-based Accuracy (MODA) Speed (F'PS)
UMPD [27] X 76.6 1.0
Ours X 84.2 1.2
MVDet [14] v 88.7 5.3
3DROM [33] v 93.9 2.4
MvCHM [31] v 95.3 2.5
Ours v 95.5 6.1

Table 5. Comparison of accuracy and computational efficiency.

approach from MvCHM [31], where pedestrians are repre-
sented as point clouds and an off-the-shelf detection frame-
work is employed. We refer to this process as label-based
aggregation. To aggregate features from multiple views,
we convert point clouds into feature vectors using the net-
work from [21], concatenating them to regress pedestrian
positions on the ground plane. We discretize the point
clouds into a grid on the BEV plane, creating pillars (verti-
cal voxels [21]). We then use PointNet [32] to extract high-
dimensional pillar features. Following the methodology
from [53], these features are flattened into the BEV plane
for the final position regression. Pedestrian occupancy is
represented as Gaussian maps, and we employ focal loss
[26] for position regression, defined as:

Lreg = —a(1 —p)7log(p), (10)

where « and v are hyperparameters specified in [26].
Comparison. We replace label-free clustering with label-
based aggregation to explore the potential of our frame-
work under supervised settings. Quantitative results on the
Wildtrack and MultiviewX datasets are reported in Table 6.
Our method (“Ours”) outperforms others across key met-
rics. Specifically, our method achieves the highest MODA
(95.5%) and MODP (90.2%), indicating superior detection
accuracy and localization precision. While MvCHM [31]
also models pedestrians using point clouds, it relies on
the accurate detection of human standing points. In con-
trast, our method does not require keypoints for localiza-
tion. Instead, we achieve a dense representation of pedestri-
ans through consistent monocular depth estimation, which
significantly aids downstream tasks such as multiview de-
tection.

7. Unsupervised localization

Our multiview unsupervised localization is summarized in
Algorithm 3. The main functions, such as matching and
clustering, are listed in Algorithm 1 and 2.

8. Multi-view Detection Compensation

We formalize our multiview detection compensation ap-
proach in Algorithm 4.

9. Computational cost

We provide an additional comparison of accuracy (MODA)
and computational efficiency in Table 5. Integrating pro-
posed human modeling with supervised method outper-
forms existing label-based approaches, achieving both the
highest accuracy and computational speed.

10. Ground depth calculation

This section explains the process of calculating ground
depth in the Wildtrack dataset. Although the ground range
differs in the MultiviewX dataset, the calculation method
remains consistent across both datasets. The ground plane
is specified in a world coordinate system with an z-range
[0,480], and a y-range [0,1440]. z is set to 0 by default.
We uniformly sample points p* € R? on the ground within
the predefined range. Given the camera c specified via the
rotation matrix R° and the translation vector t° € R? in the
world coordinate system, the ground points p* in the world
coordinate system are transformed into the camera coordi-
nate system as:

d¢ = [pC]Z7 pc —_ (Rc)—l(pw _ tc), (11)
where [-], denotes the z-coordinate of the point in the cam-
era coordinate system. This process is repeated for each
camera to calculate the corresponding ground depth.

11. GS depth filtering details

This section provides additional details about the GS depth
filtering process. We define u® as the homogenous pixel
coordinate in source view v°, K? is the source view camera
intrinsic matrix. We unproject each pixel u® from source
view v* into a 3D point p*~" € R? in world coordinate,
using predicted depth map D*®(u®) and camera poses:

ps—>w — RS(DS(US)(KS)_luS) 4 ts. (12)

Here, R is the 3 x 3 camera rotation matrix, and t* € R3 is
the camera translation vector. With reference view camera
pose R and t", we can project u® to reference view v" and
obtain D*"via:

Ds—n"(us—W’) — [KT‘(RT)—l(pS—HU _ tr)]z , (13)

ussr = Kr(Rr)fl(pus o tr)/Der(usﬁr). (14)

12. Discussion

Sparse view setup in multi-view detection differs from
existing sparse view reconstruction in several aspects.
1. Large-scale scene: unlike traditional indoor or object-
level settings, we tackle crowded surveillance (e.g., the
Wildtrack dataset) covering a 30 m x 40 m plaza with over

Wildtrack MultiviewX

Method

MODA MODP Precision Recall MODA MODP Precision Recall
MVDet [14] 88.7 73.6 93.2 95.4 83.9 79.6 96.8 86.7
SHOT [37] 90.8 7T 96.0 94.3 88.3 82.0 96.6 91.5
MVDeTr [13] 92.1 84.1 96.1 94.5 93.7 91.3 99.5 94.2
3DROM [33] 93.9 76.0 97.7 96.2 95.0 84.9 99.0 96.1
MvCHM [31] 95.3 84.5 98.2 97.1 93.9 88.3 98.5 94.8
Our-Sup 95.5 90.2 98.2 97.4 95.1 91.5 99.1 96.8

Table 6. Performance (%) of supervised methods on Wildtrack and MultiviewX. Our-Sup: our human modeling + supervised localization.

4000

= DA-v2

8 3000
== DA-v2 +ours

2000+

Pedestrian simultaneously
capture by 3 cameras.

Pedestrian count

1000+

12 3 4 5 6 7
Camera per pedestrian

Figure 10. (A) Error comparison with DA-v2 on DTU. (B) His-
togram of the number of pedestrians captured simultaneously by
multiple cameras.

DA-v2 + ours

Figure 11. Visual comparison of DepthAnything-v2 (DA-v2) with
and without our optimization.

30 pedestrians per frame. 2. Severe occlusion: despite
of seven cameras, severe occlusion causes most pedestri-
ans (78.67%) to appear in only one to three views (see
Fig. 10.B) resulting in an extremely challenging sparse-
view setup. Additionally, even though some pedestrians are
observed in multiviews, their appearances are dramatically
different across views (see Fig. 10.B), making the problem
even harder. In such challenging scenarios, generating ac-
curate, consistent depth annotations for fine-tuning is ex-
ceptionally difficult. Therefore, our proposed method ad-
dresses a meaningful and underexplored challenge.

DCHM also gains in multi-view depth estimation. To
quantify its impact on multi-view depth estimation, we eval-
uate on the DTU benchmark using DepthAnything-v2 (DA-
v2) [50] as the baseline. Under sparse-view inputs, DA-
v2 predicts relative depth per view, scales it using ground-
truth, and fuses results into point clouds via known intrin-
sics and extrinsics. We finetune DA-v2 using pseudo-depth
labels from our framework. Our approach yields more co-
herent depth maps and smoother fusion as in Fig. 11; and
lower depth error as in Fig. 10.B compared to the baseline.

While designed for Multiview Detection, our method still
improves multi-view depth estimation.

Comparison: Ours vs. Gaussian-based 3D Segmenta-
tion. Gaussian splatting provides a promising approach for
3D segmentation. Methods like Gaussian Grouping [51] use
video tracking to enforce 2D mask consistency across views
before projecting to 3D, while Gaga [29] leverages spatial
information to associate object masks across multiple cam-
eras. However, these methods require densely overlapping
camera views, which limits their applicability in scenar-
ios with sparse view coverage. Our task introduces greater
challenges due to minimal scene overlap, making geomet-
ric reconstruction particularly demanding. Approaches re-
lying on Gaussian splatting for reconstruction followed by
segmentation assignment often struggle under these condi-
tions. In contrast, our framework overcomes these limita-
tions, facilitating effective scene reconstruction and extend-
ing 3D segmentation from object-centric domains to large-
scale outdoor environments.

13. Limitations and future works

Impact of depth estimation on detection compensation.
While multiview detection compensation improves monoc-
ular detection, its performance is highly dependent on the
accuracy of depth estimation. Error in depth estimation
can result in imprecise prompts for SAM, leading to noisy
segmentation despite mask-guided sampling. Future work
could focus on methods for assessing the validity of com-
pensatory masks to mitigate these issues.

Lack full use of temporal information. Our method,
which solely relies on multiview geometry for monocular
depth fine-tuning, can lead to instability when objects are
visible to only a single camera view. Incorporating tempo-
ral information could provide a more robust and consistent
approach to depth estimation in such scenarios.

AN

Depth Anything v2

)\\\’\\\\\\\
2

Depth Pro Ours

Figure 12. Enlarged 3D reconstruction from various methods. We present enlarged views of 3D reconstructions generated by base-
lines [3, 15, 17, 23, 50], showcasing both front and back perspectives for each. Our method (“Ours”) produces more accurate and complete
reconstructions compared to the baselines.

15¢ round 2™ round

Camera 15! round GS 2" round GS

views optimization

=> Mono-depth —> > Mono-depth
fine tuning

tn "1"1?;;42’*;"*:’114,\ LR '1‘?f§f#."mg

)i

" R optimization
fine tuning P

NIy

f\

Ak g
wogedg gt by »
oAMLE EERIR i 1

Figure 13. Visualization of increasing valid pseudo-depth across all cameras. We illustrate the progression of valid depth regions for
all viewpoints during each round of optimization. This serves as a supplement visualization for Figure 7 in the main text.

