
Supplementary: Find Any Part in 3D

In the supplementary material, we provide more details
and qualitative examples of our data engine output, more
qualitative results of FIND3D, additional experimental de-
tails and quantitative results, our benchmark annotation pro-
tocol, and more discussions.

1. Additional details on the data engine
1.1. Additional data engine annotation examples
We provide additional examples of our data engine annota-
tions, both for high-quality examples in Fig. 4 and lower-
quality (but still useful) examples in Fig. 5. Upon man-
ual inspection of 50 randomly sampled objects, we observe
76% high-quality examples. The annotations cover diverse
objects and descriptions. For example, the body of a fire ex-
tinguisher is referred to both as “body” and “cylinder” from
different views. The lower-quality examples are still use-
ful for training – they might not have pronounced parts, or
contain partial masks (e.g., the baguette example), but the
supervision signal still pushes the point features close to the
correct semantic embedding (e.g. bread-related concepts).
The low-quality cartoon frog contains both correct and in-
correct masks. When learning from millions of such labels,
the incorrect labels can be “smoothed out” because it’s un-
likely that many frogs’ bellies are all incorrectly labeled as
“bowtie”.

1.2. Addressing potential Gemini inconsistencies
Gemini can assign multiple valid names to the same part
from different viewpoints (e.g. glass and window). The data
engine retains all such labels, which are handled by the con-
trastive objective (discussed in the main text, L.219-243),
allowing FIND3D to learn diverse part names. While Gem-
ini occasionally mislabels due to challenging viewpoints,
errors due to inconsistency account for 7.6% annotations
upon human evaluation of 250 random samples, compara-
ble to the 6% error rate on ImageNet [2].

1.3. Data engine prompts
Fig. 8 shows the prompt we use to obtain object orientations
from Gemini. For a given orientation, we render the object
in 10 different views, and pass the prompt along with 10
renderings to Gemini. We calculate the percentage of “yes”
answers and choose the orientation with the highest “yes”

percentage. Fig. 8 also provides some example objects with
answers from Gemini. Fig. 9 shows the prompt we use to
obtain part names from Gemini, along with some examples.

2. Additional results of FIND3D

2.1. Additional qualitative examples

We provide additional qualitative results of FIND3D in
Fig. 6 and Fig. 7. Fig. 6 shows predictions on Objaverse-
General from 4 views for each object. Fig. 7 shows predic-
tions on PartObjaverse-Tiny [7] and iPhone photos (recon-
structed to 3D via off-the-shelf single-image reconstruction
method, Trellis [6])). FIND3D can segment diverse objects
and parts, and can generalize to real-world objects, despite
being trained on synthetic data.

2.2. Robustness to parts without edges

While the data engine leverages SAM [1], which relies quite
heavily on edges, FIND3D, trained on large-scale data, is
able to overcome the edge bias. Although SAM occasion-
ally provides imperfect masks due to its edge preference,
such data is helpful for training. Parts not delineated by
edges (present in 8% of objects upon 100 random inspec-
tions) can be: (a) correctly labeled due to slight color vari-
ations (pomegranate crown in Fig. 1); (b) partially labeled
(octopus tentacle); (c) not labeled (jacket sleeve). Partial
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Figure 1. Parts without edges

labels in case (b) are useful at scale with contrastive train-
ing (main text, L.227-232); case (c) is also helpful since
the holistic mask (e.g., jacket) pushes the semantic features
close to clothing-related concepts. As shown at the bottom
of Fig. 1, FIND3D can segment out parts not delineated by
edges, such as the sleeve of a jacket with the same color, or
the rim of a monochromatic mug.
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2.3. Robustness to fine-grained parts
We test FIND3D on the finer-granularity parts from
PartNet-Level-3. As mentioned in [5], such parts can be
challenging to open-world methods. Despite this, we ob-
serve good results with FIND3D even for finer parts in
Fig. 2. For visualization purposes only, we remove the front
part of the lamp shader to show the segmentation.

query “caster” query “bulb”input input

Figure 2. Fine-grained results on PartNet-Level-3

2.4. Additional quantitative results
In Tables 2,3,4 of the main paper, in order to evaluate
all methods on the exact same data, we had to report
results on subsets of ShapeNet-Part and PartNet-E be-
cause methods like PartSLIP++ and OpenMask3D are
slow and infeasible to evaluate on the full test sets (e.g.,
OpenMask3D would take 628 hours on PartNet-E). Here
we provide full-set results for methods that are feasible
for full-set evaluation in Tab. 2 and Tab. 3. The ranking
of methods on the full sets and the subsets are the same.
The subset indices for ShapeNet-Part can be found at
model / evaluation / benchmark / benchmark _
reproducibility / shapenetpart / subset _
idxs.json of https://github.com/ziqi-
ma/Find3D/tree/main, and indices for PartNet-E
can be found at model/evaluation/benchmark/
benchmark_reproducibility/shapenetpart/
subsetidxs.json. The random rotations used for
evaluation are saved in the same folders.

ShapeNet-Part. Tab. 1 compares all methods with vari-
ous prompts, orientations, and data sources (ShapeNet-Part
vs. ShapeNetPart-V2, a benchmark of the same object
classes as ShapeNet-Part but sourced from Objaverse that
we constructed, similar to ImageNetV2 [3]). PointCLIPV2
is trained on this dataset, and other methods are evaluated
zero-shot. FIND3D performs the best in 8 out of 9 configu-
rations, despite being zero-shot. While Tab. 1 reports met-
rics on the subset of ShapeNet-Part so that all methods can
be evaluated strictly on the same dataset, for methods that
are fast enough to evaluate on the full test set (FIND3D and
PointCLIPV2), we also report the full-set evaluation results
in Tab. 2. The full-set metrics are very close to the subset
metrics. On the full set, we also see that FIND3D performs
better in 5 out of 6 settings.

On both the full set and the subset, FIND3D, despite
being zero-shot on this dataset, is the best-performing

method in all configurations except for one—the canonical
orientation with test-time top-k prompt searching. In this
setting, PointCLIPV2, a method trained on this dataset
and designed with test-time prompt searching in mind,
performs slightly better. We note that this searching takes
over an hour on an A100, which is unrealistic to perform in
real applications. Our method is not designed for test-time
prompt searching but clearly outperforms all baselines
when doing direct inference.

PartNet-E. Tab. 3 shows results on PartNet-E, both on
the subset (for all methods) and on the full set (for methods
that are fast enough to evaluate on the full set). PartSLIP++,
trained on this dataset, achieves the highest performance
with the “{part}” prompts, yet is very sensitive to prompt
variation. We note that PartSLIP++ also releases category-
specific checkpoints, but we use the cross-category check-
point for fairness of comparison. This dataset is more chal-
lenging for our method because many objects contain small
parts that are not geometrically or colorfully prominent,
such as buttons on a surface with the same color. Neverthe-
less, we see our method to be more robust to rotation and
prompt variation, and clearly outperforms the other base-
lines that are not trained on this dataset. Furthermore, Part-
SLIP++ is a slow 2D-3D aggregation method, taking up to
3 minutes per object. Our method is over 30× faster.

3. Benchmark Annotation Protocol

dragonfly

annotation UI

tail piano pedal

annotation examples

Figure 3. Benchmark annotation UI and examples

The Objaverse-General benchmark is annotated by hu-
mans from scratch using Segments.ai with a freeform paint-
brush tool. Rather than enforcing a rigid taxonomy or gran-
ularity level, we intentionally allow semantic diversity in
the annotations, which reflects the variability of the real
world. The annotation guidelines are: (1) identify named
semantic parts that do not overlap; (2) points that cannot be
easily named can be unlabeled. A second round of human
review is performed to assess annotation quality. Objects
flagged as incorrect are re-labeled. As shown in Fig. 3, the
annotations contain different granularity levels, including
fine-grained parts like the piano pedal, and parts not delin-
eated by edges, like the dragonfly tail.

https://github.com/ziqi-ma/Find3D/tree/main
https://github.com/ziqi-ma/Find3D/tree/main
https://segments.ai/


4. Additional discussions
4.1. Definition of parts
Ambiguity of granularity is a key challenge in part segmen-
tation. Our definition of object part is any part that occurs in
the common vocabulary. An open part vocabulary naturally
encompasses many granularities (arm vs. hand) without re-
quiring an explicit taxonomy. It can also handle other am-
biguities, such as naming a part by function, material, etc.
(window vs. glass), which are difficult to capture with a sin-
gle taxonomy. Additionally, shared names in language can
signal part similarities across categories (leg of chair and
human both imply a thin, supportive structure).

4.2. Discussion on architecture vs. training data
FIND3D’s performance comes from both the large training
dataset and an architecture that enables learning at scale.
The baselines cannot directly scale up to our dataset due to
their design, such as extensive inference-time search (Point-
CLIPV2 [9] would take over 32 days on an A100 on our
dataset), category-specific fine-tuning (PartSLIP++ [8]), or
the training-free design (OpenMask3D [4]). In contrast,
FIND3D is a feedforward model that naturally scales with
the amount of training data available. In our scaling analy-
sis, when we train on the same data scale as PointCLIPv2
[9] and PartSLIP++ [8] (16 & 45 categories, respectively),
we achieve 4%, 5% higher mIoU (Fig.6, main paper).

4.3. Extension to meshes
FIND3D starts with the point cloud representation due
to their general applicability (e.g., robotic sensors, smart-
phone RGBD captures), and modeling scalability (shown
by FIND3D). Meshes contain more geometric cues due to
their connectivity, but are more expensive to process. Inves-
tigating whether similar scaling behavior applies to training
FIND3D with additional mesh information is an interesting
future direction.

5. Code
Code is provided at https://github.com/ziqi-
ma/Find3D/tree/main.
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Figure 4. High-quality examples of data engine annotations. The LVIS label (from Objaverse) is shown below each input object. Our data
engine annotates diverse objects and parts, including multiple captions for the same parts, such as “candelabra arm” and “candlestick arm”,
and multiple levels of granularity, such as “helmet shell” and “ear pad”.
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Figure 5. Lower-quality examples of data engine annotations. The LVIS label (from Objaverse) is shown below each input object. Some
objects do not have pronounced parts, such as the baguette, and get partial part labels due to texture/lighting change on surfaces. Some
objects are low quality, such as the cartoon frog, which results in incorrect labels.
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Figure 6. Multiple views of FIND3D predictions on Objaverse-General examples.
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Figure 7. Multiple views of FIND3D predictions on PartObjaverse-Tiny examples and iPhone photos (reconstructed to 3D with off-the-
shelf method).



mIoU(%) Canonical Orientation Rotated Objaverse-ShapeNetPart

top-k {part} of
a {object}

{part} top-k {part} of
a {object}

{part} top-k {part} of
a {object}

{part}

PointCLIPV2 48.666 16.912 20.215 26.111 16.878 18.193 21.177 15.136 17.110
PartSLIP++ – 1.432 6.460 – 0.937 6.034 – 1.542 11.622
OpenMask3D – 8.938 10.373 – 6.748 14.556 – 15.870 13.768
FIND3D (Ours) 43.613 28.386 24.085 43.781 29.637 23.712 50.002 42.151 30.018

Table 1. Detailed results on ShapeNet-Part subset. Shaded cells mean the method is trained on the same dataset (expected higher than
white cells), and white cells mean zero-shot evaluation. We evaluate different orientations, query prompts, and data domains (ShapeNet-
Part vs. ShapeNetPart-V2). We evaluate on 3 types of prompts: “{part} of a {object}”, “{part}”, and top-k. Top-k prompt
reproduces the PointCLIPV2 paper, which runs an iterative search over 1400× nparts prompts per object category to choose the best query
text prompts. For fairness of comparison, we follow the same procedure to get top-k prompt metrics, although our method is not designed
with prompt searching in mind, and it is not realistic to conduct this slow (> 1 hour on A100) searching process at inference time. Our
method, despite being zero-shot on this dataset, has the best performance in 8 out of 9 configurations—all configurations except for the
canonical orientation with top-k prompt searching.

mIoU(%) Canonical Orientation Rotated

top-k {part} of
a {object}

{part} top-k {part} of
a {object}

{part}

PointCLIPV2 48.472 17.471 20.157 26.337 17.034 18.021
FIND3D (Ours) 41.517 28.532 23.569 42.734 29.966 23.794

Table 2. Detailed results on ShapeNet-Part full test set. Shaded cells mean the method is trained on the same dataset (expected higher
than white cells), and white cells mean zero-shot evaluation. PartSLIP2 and OpenMask3D are too slow and thus infeasible to evaluate on
the full test set. The metrics are very close to the subset results in the previous table. Our method, despite being zero-shot on this dataset,
has the best performance in 5 out of 6 configurations—all configurations except for the canonical orientation with top-k prompt searching.
This searching process takes over an hour on an A100 and our method is not designed for test-time prompt searching.

mIoU(%) Canonical Orientation Rotated

Full Subset Full Subset

{part} of a
{object}

{part} {part} of a
{object}

{part} {part} of a
{object}

{part} {part} of a
{object}

{part}

PointCLIPV2 11.619 9.647 11.275 9.700 10.943 10.261 10.317 10.216
PartSLIP++ – – 5.123 32.705 – – 3.866 23.033
OpenMask3D – – 12.538 11.242 – – 11.933 11.673
FIND3D (Ours) 17.143 16.211 16.861 16.384 17.703 16.819 17.620 17.164

Table 3. Detailed results on PartNet-E test set. Shaded cells mean the method is trained on the same dataset (expected higher than white
cells), and white cells mean zero-shot evaluation. Cells with “-” denote that the method is too slow to be evaluated on the full test set. We
evaluate with 2 types of prompts: “{part} of a {object}” and “{part}”. PartSLIP++ achieves the highest performance with the
“{part}” prompts, yet the performance drops 84% when we vary the query prompt. This dataset is more challenging for our method due
to the sparsity of labels and the presence of small parts that are not geometrically or colorfully prominent (e.g., buttons on a surface with
the same color). Nevertheless, our method is more robust to rotation and prompt variation, and clearly outperforms the other baselines not
trained on this dataset.



Yes NoYes

Prompt: For each image, is the object in 
an orientation that is usually seen?
Please answer yes or no for each image.

Gemini: No

Figure 8. The prompt used to query Gemini for object orientation.
The car and the Christmas tree are in common orientations (and
thus will yield higher-quality annotations), whereas the camel and
the parasol are not.

flower pot flower lens temple

Prompt: What is the name of the part of the 
object that is masked out as purple?
If you cannot find the part or are unsure, 
say unknown. Please only output the part 
name as one word or phrase.

Gemini: 

spout handle gemstone ring

Figure 9. The prompt used to query Gemini for object part names.
We show 2 example masks from different views for a potted plant,
a pair of glasses, a teapot, and a ring.
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