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1. Pseudocode of Flow-MIL
Algorithm 1 gives the details of Flow-MIL.

2. Dataset Description

To demonstrate the performance of the proposed Flow-MIL
and compare it to SOTA algorithms, various experiments
were conducted over three public datasets: CAMELYON16
[1], TCGA NSCLC ', PANDA [2]. It’s noted that CAME-
LYON and TCGA-NSCLC datasets are binary classification
problems, while the PANDA dataset is a multi-class dataset
that contains 3 Gleason pattern grades and instance-level
annotations.

2.1. CAMELYON16

CAMELYON is a publicly available dataset for metastasis
detection in breast cancer. It consists of 400 H&E-stained
WSIs of lymph nodes, of which 270 are used for training
and 130 for testing. WSIs containing metastasis are labeled
positive, while those without metastasis are labeled nega-
tive. The dataset also provides pixel-level labels for metas-
tasis areas. Prior to training, we divided each WSI into non-
overlapping 512x512 image patches under 10x magnifica-
tion.

2.2. PANDA

The Prostate cANcer graDe Assessment (PANDA) is a pub-
licly available dataset designed for diagnosing prostate can-
cer. Unlike traditional cancer classification methods that
focus on binary categorization of cancerous and normal tis-
sue, the PANDA dataset further categorizes cancerous re-
gions into three Gleason pattern grades (3, 4, or 5) based on
the tumor’s architectural growth patterns. Individual WSI
can contain multiple different Gleason pattern regions. The
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PANDA dataset comprises 10,616 WSIs from two medi-
cal centers, of which 5,160 WSIs from Radboud University
Medical Center have pixel-level annotations for the Glea-
son pattern regions. For a balanced distribution of train-
ing and validation data, the 5,160 WSIs are split at ran-
dom: 70% designated for training and the remainder for
testing. And, aligning with the processing techniques of
the CAMELYON 16 competition, we adopted a uniform ap-
proach—slicing the WSIs into patches of 224x224 dimen-
sions at 10x magnification.

2.3. TCGA-NSCLC

TCGA-NSCLC includes 1054 WSIs with two subtypes, i.e.,
Lung Squamous Cell Carcinoma (TGCA-LUSC) and Lung
Adenocarcinoma (TCGA-LUAD), including 1054 WSIs
(840 training slides and 210 testing slides) of two subtypes
of lung cancer, each slide containing more than 80% tumor
area, and the task is to classify these tumor slides into one
of the two subtypes. Only slide-level labels are available
for this dataset. As the dataset is much easier than CAME-
LYON16, we use only the pre-extracted instance features
provided by instead of end-to-end training.

3. Implementation Details

For feature extraction, we employ a ResNet18 encoder [3]
to process image patches. Each feature embedding ex-
tracted by the encoder has an initial dimension of 1024,
which is subsequently reduced to 512. In the dual-branch
structure, the projectors are implemented as linear layers
with Batch Normalization, and during training, the two pro-
jectors are updated alternately. All experiments are con-
ducted on NVIDIA GPUs. For the CAMELYONI16 and
PANDA dataset, we extract patches directly from WSIs,
while for the TCGA dataset, we utilize the pre-extracted
instance features provided by DSMIL [5].

Flow-MIL consists of N F'low blocks. Specifically, for



Algorithm 1 WSI Classification with Flow-MIL
Input: WSI dataset D = {(X,Y)}, where X are whole
slide images embeddings and Y are bag-level labels
Data: Invertible Flow f(-; ) and Inverse Flow f=1(-;6y),
MIL block M (; 6,,), instance classifier I(-; 6;)
Output: Optimized parameters 8¢, 60,,,0;, G
foreach training epoch do
Latent Feature Mapping Phase
Z + f(X;05)  # Transform WSI patch features
into LSES
X < f~Y(Z;0;) #Reconstruct input features to
enforce information preservation
Lrec +— MSE(X, e ) # Reconstruction loss
ensures invertibility
Piyent(2;) + GMM(z;),Vz; € Z  # Model latent
features with GMM
Lyroto < CrossEntropy (Pagent, ¥')
| features with bag-level labels
MIL Block Phase
a; + M(x;;0m),Vo, € X
scores for each instance
Xage ¢ Y_a; - x; # Aggregate instance features
using attention weights
Y ¢+ Softmax(X,g,)
Liag < CrossEntropy (Y, Y")
bag-level classification loss

# Align latent

# Compute attention

# Predict bag label
# Compute

Instance-Level Classification Phase
pseudo ) - Praent(2i) + A2 - a;

pseudo-labels for instances
Ui < 1(2;0;),V2z; € Z  # Predict instance-level
labels

pseudO)

Lins < Y, CrossEntropy (7, y;

3

# Generate

Optimization Phase

Of < 0f —15Va, (Lrec + M Lproto) # Update latent
embedding model
am — gm - Umvem (ﬁrec + )\1£prot0 + »Cbag) #
Update MIL block parameters
0; < 0; —n; Vg, Lins # Update instance classifier

the CAMELYON16 and TCGA datasets, we use N = 5
flow blocks, while for the PANDA dataset, we use N = 2
flow blocks. The GMM used in the latent space has k = 5
components, determined based on ablation experiments.
Additionally, the MIL block follows the structure of the tra-
ditional ABMIL [4] method.

The training process employs the cross-entropy loss and
mse loss as the primary objective. For optimization, we use
SGD optimizer with a learning rate of 1 x 1073,
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Figure 1. Additional visualization of LSPs for Positive Lymph
Node Metastasis. The prototypes in the latent space are visualized
for the positive lymph node metastasis category, with instances
assigned to the prototype with the highest posterior probability.
Color-coded regions on the WSI highlight key pathological fea-
tures, such as Proto-3 (malignant transformation) demonstrating
the latent space captures subtle morphological differences.

4. More Details on Flow-MIL
4.1. More Visualization on CAMELYON dataset

We present additional interpretability visualizations, as
shown in Figure | from another perspective, further vali-
date how different types of prototypes within the LSP ef-
fectively model the positive lymph node metastasis cate-
gory. These visualizations align with the figures in the main
text, showcasing the distinct pathological features captured
by each prototype and reinforcing the interpretability of the
proposed method.

4.2. Hyper Parameter on Guidance of LSP

To simplify the experimental design, reduce hyperparame-
ter complexity, and enhance model stability, we simplified
the LSP guidance mechanism into a single control factor, h.
The new simplified formula is:

h-ply = clz) + a;
Pins: 1+h )

ey

where h determines the relative importance of p(y = ¢|z;)
(classification probability based on latent features) and a; is
attention score obtained by MIL Block.

To evaluate the impact of i, we conducted an ablation
study varying h from 0.1 to 0.6. The results, as shown in
Table 1, demonstrate that setting h = 0.2 achieves the best
performance for both instance-level and bag-level AUC.
This finding highlights the effectiveness of the simplified



h  Instance-level AUC  Bag-level AUC

0.1 0.9209 0.9176
0.2 0.9277 0.9437
0.3 0.9230 0.9348
0.4 0.9254 0.9289
0.5 0.9235 0.9277
0.6 0.9054 0.9248

Table 1. Performance comparison across different h values.

guidance approach and its contribution to improving the
model’s classification accuracy.

4.3. Supplementary Derivation

In this section, we derive the P(y = ¢ | z;), which is funda-
mental to both instance-level and bag-level classification in
our framework. The derivation leverages Gaussian Mixture
Model (GMM)-based likelihood modeling and Bayes’ the-
orem. While our primary formulation includes the posterior
P(y = ¢ | z) as a component, its mathematical origin is
critical to understanding its role in the framework and was
omitted in the main text. Here, we provide the detailed ex-
planation.

The posterior probability P(y = ¢ | z;) is computed
using Bayes’ theorem as:

=c)P(y=c)
P(2) 7

P Zi
Ply=c|z)= 1Y @)
where, P(z; | y = c¢) is the likelihood, representing the
conditional probability of z; given class c. P(y = c¢) is the
prior probability of class ¢. P(z;) is the marginal probabil-
ity, obtained by summing over all possible classes. Assum-
ing uniform class priors, i.e., P(y = ¢) = &, the equation
simplifies to:
Pzi|ly=c
Ply=c|z)= C( | ) — 3)
o1 Plzi|y=¢)
To model P(z; | y = ¢), we assume a GMM for each
class ¢, expressed as:

k
P(zily=c) =Y mej Nz | peg, Tey) @)
j=1

where, . ; is the mixing coefficient for the j-th Gaussian
component in class ¢. N(z; | pic, j, Xe ;) is the Gaussian
distribution with mean f. ; and covariance Y. ;, and k is
the number of Gaussian components per class.

For each Gaussian component j of class ¢, the poste-
rior probability p(z; | ¢, j) that z; belongs to component j
within class c is given by:

e N (2 | prej, Ee )
Zle 7rc,l : N(Zz | ,Ufc,la Ec,l)

p(Zi | C7j) = (5)

This posterior represents the normalized contribution of the
j-th Gaussian component to the total likelihood of z; under
class c.

Substituting P(z; | y = c) into Bayes’ theorem, the
posterior probability P(y = ¢ | z;) becomes:

k
D1 e N (26 | peyg Xej)

S S Ty N (i | e g Ber )

(6)
This formulation ensures that the posterior probability
P(y = ¢ | #) is normalized across all classes, reflecting
the relative likelihood of z; belonging to class c.

Ply=c|z)=

With the P(y = ¢ | z;) computed for each instance z;
in a bag, we aggregate these probabilities to estimate the
bag-level probability:

n

— 1
Ply=c|Bag)=—> Ply=clz), ()
=1

where n is the number of instances in the bag.

4.4. Pipeline of Fiow Block and Flow~! Block

Invertible neural networks (INNs) are a special class of net-
work architectures that enable efficient mappings from in-
put space to latent space using carefully designed transfor-
mations f(x). These networks not only perform forward
mapping but also allow the original input to be perfectly
reconstructed through the inverse transformation f~!(z).
This design ensures that INNs excel in lossless information
processing and density estimation.

The key idea of INNs is to decompose complex map-
pings into simple, efficient local operations through split-
ting and coupling transformations. Specifically, input fea-
tures X are split into two parts, X and XZ. The cou-
pling network generates transformation parameters s(X )
and #(X#), which are used to perform conditional affine
transformations on X Z. This design enables direct compu-
tation of the inverse transformation without requiring com-
plex numerical optimization and efficient computation of
the Jacobian determinant for density estimation.

The modular design of INNs allows stacking multiple
flow blocks to gradually capture the complexity of the input
distribution. To enhance stability, flow blocks often include
feature permutations or linear transformations to improve
network expressiveness.



Algorithm 2 F'low Block Transformations

Require: Input tensor = € R?, Coupling network 6(-)
Ensure: Transformed output z € R? and log-determinant
of Jacobian log | det J¢ ()|
1: Split z into 2 € R™ and 2% € R¥~"™,
2: Compute coupling parameters (s,t) = 6(z*), where
s,t € RI—™,
3: Affine transformation:

A_ A B

, 2P =2B oexp(s) +t

4: Concatenate: z = Concat(z4, 25).
5: Compute log-determinant of Jacobian:

d—m

log |det J;(x)| = Z S
i=1

6: return z,log|det Jy¢(z)|

Algorithm 3 Flow~! Block Transformations

Require: Transformed tensor z € R?, Coupling network
0(-)
Ensure: Reconstructed input z € R?
1: Split z into 24 € R™ and 2% € R,
2. Compute coupling parameters (s,t) = 0(z*), where
s,t € Ri—™,
3: Inverse affine transformation:

4: Concatenate: 2 = Concat(z?, z7).
5: return x
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