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Supplementary Material

Overview
In this appendix, we provide additional descriptions of the
following contents:
• Relationship with prior works in Appendix A, including

some discussions about the differences.
• More training details of hyperparameters in Appendix B.
• Diagrams of various timestamp sampling distributions in

Appendix C.
• Additional experimental results in Appendix D.
• Additional qualitative results and cases of the enhanced

CLIP (Appendix E) and MLLMs with our enhanced CLIP
(Appendix F).

• We also attach algorithms of our two-stage training with
continuous and discrete denoisers in Appendix G.

A. Relationship with Prior Works
In this paper, we propose a two-stage post-training method
to enhance discriminative models’ fine-grained visual rep-
resentations. For discriminative models, we primarily
choose CLIP [8], considering its wide range of applications.
Specifically, CLIP is inherently a vision-language model,
capable of image-text retrieval and matching. Additionally,
CLIP ViT is widely employed as a visual encoder in Multi-
modal Large Language Models (MLLMs) [4, 5, 11]. Note
that our approach follows a post-training paradigm, where
we enhance the fine-grained capabilities of a pre-trained
CLIP ViT, while preserving its original global semantics.

Comparison with DIVA [14]. DIVA is a pioneering work
and proposes to enhance visual representations of CLIP
ViT through diffusion feedback. It independently enhances
CLIP ViT’s visual representations with the guidance of pre-
trained stable diffusion [9]. Similar to DIVA, our work fo-
cuses on enhancing CLIP ViT’s internal visual representa-
tions. The enhanced CLIP itself could be a more competent
vision-language model with better image-text retrieval per-
formance. Furthermore, the enhanced CLIP ViT serves as
a plug-and-play module and could be seamlessly plugged
into MLLMs. When using the same training recipes but
with the enhanced vision encoder, MLLMs could be more
capable on several vision-centric benchmarks, with better
fine-grained perception on visual details and overcoming vi-
sual shortcomings brought about by the original CLIP.

Different from DIVA, we delve into the underlying prin-
ciples of how generative models enhance vision models [1]
from various orthogonal dimensions. Notably, we only
employ lightweight denoisers without pre-trained weights

of heavy generative models. Our method is efficient yet
stronger than DIVA. We also provide several key insights
about how to enhance visual representations, i.e., condi-
tioning mechanisms and training configurations. We fur-
ther explore the implementation of both continuous and dis-
crete generative models. When equipped with correspond-
ing tailor-made designs, both continuous and discrete de-
noisers outperform DIVA.

Comparison with ROSS [13]. Ross is a pioneering work
that explores the intrinsic signals in the vision modality and
proposes to append vision-centric self-supervision into the
training of MLLMs. The core difference between ROSS
and our method is that, ROSS is directly oriented to train-
ing better MLLMs. In most cases, ROSS freezes CLIP ViT
and enhances the vision-centric performance of MLLMs
through the parameters of LLMs. In contrast, our method
is directly oriented to enhance CLIP ViT’s visual repre-
sentations. Our method is more general, and the result-
ing enhanced CLIP could be plugged into various MLLMs.
In summary, we independently enhance CLIP ViT, which
could be merged into MLLMs for further enhancements,
while ROSS directly enhances MLLMs with the ViT frozen.

B. More Training Details
Default training settings. Our training process consists
of two stages, each involving one epoch on the CC3M [10]
dataset. We choose AdamW [6] as the optimizer, with a
learning rate of 1e-4 and 1e-5 for Stage-1 and Stage-2, re-
spectively. At Stage-2, we optimize the visual encoder us-
ing LoRA [3] with a rank of 16. We train the model on 8
GPUs with a per-device batch size of 16, and the gradient
accumulation steps are set as 2, resulting in a global batch
size of 256. We plug LoRA to CLIP ViT, with a rank of
16, and an α of 16. Additionally, we employ dropout with
a ratio of 0.1 within LoRA.

Detailed settings in Fig. 1 of main manuscript. The
default settings are: a lightweight denoiser with 2 MM-
DiT [7] and 4 Single-DiT blocks, using only the [CLS]
as the condition, and two-stage training with 100,000 steps
in stage-1 and 5,000 steps in stage-2. Each of the four as-
pects in Fig. 1(b) modifies only one parameter or dimension
at a time. Specifically, (i) changes #iters in stage-2 from
100 to 10,000. (ii) varies the number of denoiser-blocks
(n×MM-DiT+2n×Single-DiT) from n = 1 to n = 3. (iii)
conditions denoisers with [CLS] along with n% of local
tokens. (iv) compares the lightweight denoiser with n = 4
and the pretrained heavy FLUX with n = 19.
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Figure S1. Probability density function of different distributions.

Detailed settings in Table 7 of main manuscript. The
pretrained FLUX is also trained under the same setting, i.e.,
two-stage training and only the [CLS] serves as the con-
dition. Without these proposed keypoints, pretrained de-
noiser also fails to gain desirable results, e.g., 32.9→22.2
on MMVP, further indicating the generality of our method.

C. Diagrams of Timestamp Sampling
The scaled Logit-Normal timestamp sampling [2] is:

t = sigmoid(s · ε), where ε ∼ N (0, 1). (S1)

We provide some illustrative diagrams to show the distribu-
tion of several candidate distributions, as shown in Fig. S1.
In our scaled Logit-Normal sampling, as s decreases, the
distribution becomes more focused on sampling around the
middle (t = 0.5). Conversely, as s increases, the distri-
bution becomes more biased towards sampling at the ex-
tremes, i.e., t = 0 or 1.

D. More Experimental Results
The effect of LoRA. In Stage-2, we apply LoRA to the
visual model. The reason is that directly training on the vi-
sual model causes rapid updates, which can easily damage
the model’s high-level semantics and lead to overfitting. By
using LoRA, the model can be trained on a larger variety of
samples, allowing it to learn more generalizable and fine-
grained representations. We conduct experiments on sev-
eral CLIP backbones, and compare the performance with
directly training and LoRA training, as shown in Fig. S2.
The performance with LoRA for the visual encoder consis-
tently outperforms the cases of direct training.
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Figure S2. The effect of LoRA on several CLIP backbones.

Table S1. Performance of various mask ratios on Ope-
nAICLIP@224.

Mask Ratio (%) 50 60 70 75 80 85 90 random (50-90)

MMVP-VLM 28.1 27.4 28.9 27.4 26.7 25.9 25.9 28.9

Whether to update denoiser and projector in Stage-2.
In the main text, we argue that in Stage-1, the visual en-
coder should be fixed, and we train the denoiser and projec-
tor. In this way, the projector could learn to bridge the gap
between the feature spaces, which serves as the irrelevant
information G2 for visual enhancements. While in Stage-
2, we begin to train CLIP ViT to enhance its visual repre-
sentations. We empirically found that whether the denoiser
and projector are updated in Stage-2 has marginal impacts
on the final results, as long as Stage-1 training is sufficient.
The results are shown in Fig. S4.

Performance with various mask ratios. In the discrete
denoiser, we apply masking mechanisms. Here, we pro-
vide experimental results across various mask ratios of Ope-
nAICLIP@224, as shown in Table S1.
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Figure S3. Qualitative results of CLIP. The enhanced CLIP overcomes the original visual shortcomings in fine-grained details.
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Figure S4. The performance of whether to update the deonoiser
and the projector in Stage-2.

E. Qualitative Results of CLIPs
We provide further qualitative results of the original CLIP
and our enhanced CLIP, as shown in Fig. S3. The en-
hanced CLIP overcomes original visual shortcomings in
fine-grained details, including color, quantity, structural
characteristics, as well as state.

F. Qualitative Results of MLLMs
We provide qualitative results of LLaVA-1.5 [5] with orig-
inal CLIP ViT and our enhanced CLIP ViT, as shown in
Fig S5. Our enhanced visual model could further boost
MLLMs’ fine-grained visual perception abilities [12].

G. Algorithms
For a clearer and more thorough understanding of our
method, we attach the algorithm details of two-stage post-
training with continuous and discrete denoisers in Algo-
rithm 1 and Algorithm 2, respectively.



Question: 

From which angle is this image taken?
(a) Front (b) Side

The image is taken from a front angle, as the snake is seen 
resting on a branch.

Answer: (a)

The image is taken from a front angle, allowing us to see the 
green snake on the tree branch.

Answer: (a)

LLaVA 1.5

LLaVA 1.5 + Our ViT

Question: 

From which angle is this image taken?
(a) Front (b) Side

The image is taken from a front angle, as the green snake is 
seen from the front, with its head and body visible.

Answer: (a)

The image is taken from a side view, with the green snake 
resting on a tree branch.

Answer: (b)

LLaVA 1.5

LLaVA 1.5 + Our ViT

✅

✅ ❌

✅

Question: 

Is the edge of the heart in the picture 
white or dark-colored?
(a) White (b) Dark-colored

The edge of the heart in the picture is white.

Answer: (a)

The edge of the heart in the picture is white.

Answer: (a)

LLaVA 1.5

LLaVA 1.5 + Our ViT

Question: 

Is the edge of the heart in the picture 
white or dark-colored?
(a) White (b) Dark-colored

The edge of the heart in the picture is white.

Answer: (a)

The edge of the heart in the picture is dark-colored.

Answer: (b)

LLaVA 1.5

LLaVA 1.5 + Our ViT

✅

✅ ❌

✅

Question: 

In this image, how many eyes can you 
see on the animal? 
(a) 1 (b) 2

In the image, there are two eyes visible on the bird.

Answer: (b)

In the image, there is only one eye visible on the bird.

Answer: (a)

LLaVA 1.5

LLaVA 1.5 + Our ViT

Question: 

In this image, how many eyes can you 
see on the animal? 
(a) 1 (b) 2

In the image, there are two eyes visible on the animal.

Answer: (b)

In the image, there are two eyes visible on the animal.

Answer: (b)

LLaVA 1.5 

LLaVA 1.5 + Our ViT  

✅

❌ ✅

✅

Figure S5. Qualitative results of MLLMs on MMVP-MLLM benchmark. When equipped with our enhanced CLIP, MLLMs produce better
vision-centric performance.



Algorithm 1 Two-stage Visual Enhancements with Continuous Lightweight Denoiser

Input: Lightweight and random-initialized denoiser gϕ(·), with lightweight FLUX-like architecture (MM-DiT + Single-DiT).
Input: Pre-trained CLIP ViT vθ(·) for fine-grained visual representation enhancements.
Input: Random initialized projector hω(·) to bridge the feature space of vθ and condition space of gϕ.
Input: The scale hyperparameter s in the proposed scaled Logit-Normal sampling.
Input: Pre-trained VAE vae(·) to provide latent space for generative modeling.
Input: Image-only training dataset D without annotations.

1: # =================================== Stage-1 ==================================
2: for x in D do
3: ▷ Prepare input data for generative modeling in latent space: x̃1 = vae(x) and x̃0 ∼ N (0, I).
4: ▷ Interpolating in the feature space: x̃t = tx̃1 + (1− t)x̃0.
5: ▷ Visual encoding as conditions for denoisers: hω ◦ vθ(x).
6: ▷ Timestamp sampling via scaled Logit-Normal distributions: ε ∼ N (0, 1) then t = sigmoid(s · ε).
7: ▷ Denoising regression objective (flow matching): # only update gϕ and hω.

argmin
ϕ,ω

Et,x,x̃0,x̃1

∥∥(x̃1 − x̃0)− gϕ

(
x̃t, t,hω ◦ vθ(x)

)∥∥2

2
.

8: end for

9: # =================================== Stage-2 ==================================
10: Plug LoRA upon vθ .
11: for x in D do
12: ▷ Prepare input data for generative modeling in latent space: x̃1 = vae(x) and x̃0 ∼ N (0, I).
13: ▷ Interpolating in the feature space: x̃t = tx̃1 + (1− t)x̃0.
14: ▷ Visual encoding as conditions for denoisers: hω ◦ vθ(x).
15: ▷ Timestamp sampling via scaled Logit-Normal distributions: ε ∼ N (0, 1) then t = sigmoid(s · ε).
16: ▷ Denoising regression objective (flow matching): # update vθ. Optional: gϕ and hω.

argmin
θ

Et,x,x̃0,x̃1

∥∥(x̃1 − x̃0)− gϕ

(
x̃t, t,hω ◦ vθ(x)

)∥∥2

2
.

17: end for
Output: The enhanced visual model v⋆

θ with stronger fine-grained representations.



Algorithm 2 Two-stage Visual Enhancements with Discrete Lightweight Denoiser

Input: Lightweight and random-initialized denoiser gϕ(·), instantiated with a lightweight Perceiver.
Input: Pre-trained CLIP ViT vθ(·) for fine-grained visual representation enhancements.
Input: Random initialized projector hω(·) to bridge the feature space of vθ and condition space of gϕ.
Input: Mask ratio r for discrete modeling.
Input: Pre-trained VQ-GAN vq-gan(·) to discrete indices for generative modeling.
Input: Image-only training dataset D without annotations.

1: # =================================== Stage-1 ==================================
2: for x in D do
3: ▷ Obtain latent embeddings and corresponding discrete indices of input data in VQ-GAN’s codebook: x̃, s = vq-gan(x).
4: ▷ Masking x’s tokens with ratio r to obtain masked part x̃mask, smask and unmasked part x̃unmask, sunmask.
5: ▷ Visual encoding and obtain conditions via cross-attention for denoisers:

Q = x̃unmask,

K, V = concat
(
x̃unmask;hω ◦ vθ(x)

)
,

cω,θ = cross-attn(Q,K, V ).

6: ▷ Denoising cross-entropy objective (masked index prediction): # only update gϕ and hω.

argmin
ϕ,ω

Ex − log

L∏
i=1

gϕ

(
smask|sunmask, cω,θ

)
.

7: end for

8: # =================================== Stage-2 ==================================
9: Plug LoRA upon vθ .

10: for x in D do
11: ▷ Obtain latent embeddings and corresponding discrete indices of input data in VQ-GAN’s codebook: x̃, s = vq-gan(x).
12: ▷ Masking x’s tokens with ratio r to obtain masked part x̃mask, smask and unmasked part x̃unmask, sunmask.
13: ▷ Visual encoding and obtain conditions via cross-attention for denoisers:

Q = x̃unmask,

K, V = concat
(
x̃unmask;hω ◦ vθ(x)

)
,

cω,θ = cross-attn(Q,K, V ).

14: ▷ Denoising cross-entropy objective (masked index prediction): # update vθ. Optional: gϕ and hω.

argmin
θ

Ex − log

L∏
i=1

gϕ

(
smask|sunmask, cω,θ

)
.

15: end for
Output: The enhanced visual model v⋆

θ with stronger fine-grained representations.
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