Lay2Story: Extending Diffusion Transformers for Layout-Togglable Story
Generation

Supplementary Material

A. Related Work

A.1. Consistent Text-to-image Generation

Consistent image generation methods can be categorized
into high-level semantic consistency, facial consistency,
style consistency, and object consistency [36]. High-
level semantic consistency methods [10, 11, 16, 39], such
as ReVersion [11], achieve consistency by inverting ob-
ject relations and utilizing a contrastive loss to guide the
optimization of token embeddings toward specific clus-
ters of Part-of-Speech tags, such as prepositions, nouns,
and verbs. Facial consistency methods [12, 25, 31, 40],
such as PhotoMaker [12], construct high-quality datasets
through meticulous data collection and filtering pipelines,
employing a two-layer MLP to fuse ID features and class
embeddings for comprehensive human portrait represen-
tation. Style consistency methods [8, 22, 29, 37], such
as StyleAdapter [29], introduce a specialized embedding
module to extract and integrate global features from multi-
ple style references and employ a dual-path cross-attention
mechanism within the learning framework. Object con-
sistency methods [4, 27, 28] include approaches like IP-
Adapter [34], which trains a lightweight decoupled cross-
attention module where image and text features are pro-
cessed separately with query features; DreamBooth [21],
which proposes using a unique modifier with a rare token
to represent the subject of interest and fine-tuning all pa-
rameters of the diffusion model; and UMM-Diffusion [14],
which designs a multi-modal encoder to generate fused fea-
tures based on the reference image and text prompt. Story-
telling task can essentially be categorized as an object con-
sistency image generation task, aiming to achieve consistent
visual narratives through cross-modal fusion [36].

A.2. Layout-to-image Generation

Layout-controllable image generation aims to apply layout
control to place subjects in user-defined positions within
an image, which has become an active research area [7,
15, 30, 38]. SimM [5] is a training-free system that cor-
rects layout errors during inference by analyzing prompts,
detecting inconsistencies, and adjusting activations. ReCo
[33] introduces a unified token vocabulary containing both
text and positional tokens for precise, open-ended regional
control. InteractDiffusion [9] enhances T2I diffusion mod-
els by incorporating Human-Object Interaction (HOI) infor-
mation through tokenized embeddings and a self-attention
layer, enabling better control of interactions and locations in

generated images. CreatiLayout [35] introduces a Siamese
architecture to decouple image-layout interactions in MM-
DiT, treating layout as an independent modality and inte-
grating it with text and image features while leveraging a
large-scale dataset for training and evaluation. Combining
the Layout-to-Image task with the Storytelling task is both
innovative and valuable.

A.3. Storytelling Generation

Generating a sequence of frames with a consistent sub-
ject from a given script, known as storytelling, is a rapidly
evolving field. Current methods are generally categorized
into two types: training-free and training-based. Training-
free methods, such as StoryDiffusion [41], utilize consis-
tent self-attention computation based on the SD1.5 [19]
model to maintain subject consistency throughout the story
sequence. ConsiStory [24] achieves subject consistency by
sharing the internal activations of the pre-trained diffusion
model. 1PromptlStory [13] takes advantage of the inher-
ent context consistency of language models, using a single
prompt to generate a cohesive narrative across the story se-
quence. Training-based methods, such as Seed-Story [32],
employ the Multimodal Large Language Model (MLLM)
to predict text and visual tokens, followed by a visual de-
tokenizer to ensure subject consistency across the image se-
quence. FLUX.1-dev IP-Adapter [23] builds upon the ro-
bust image generation model FLUX [1], training an adapter
to integrate reference image features, enabling FLUX to
generate images while leveraging the reference image con-
ditions to maintain consistency.

In this paper, we propose a training-based method,
Lay2Story, which not only keeps the subject consistent but
also enables more refined control over the subject by inject-
ing layout conditions into the model, including its position,
appearance, clothing, expression, posture, and other rele-
vant details. Our model consists of two main branches: the
global branch and the subject branch. The global branch
takes noise latent as input, guided by global captions, and
focuses on generating the overall image content. The sub-
ject branch takes as input the noise latent, subject mask,
and latent vector of a reference image, guided by sub-
ject captions and focuses on maintaining subject consis-
tency while generating the subject’s position and detailed
attributes. The Lay2Story model, built on Diffusion Trans-
formers (DiTs), is based on the PixArt-ac [2] image gen-
eration model. Inspired by MM-DiT, Lay2Story employs
Masked 3D Self-Attention to enhance subject consistency



through inter-frame attention guided by subject masks. Un-
like StoryDiffusion, it is trained on consistent sequences;
unlike Storynizor, it additionally incorporates subject in-
formation for more precise layout control. During train-
ing, we first fine-tune the base model with image data from
Lay2Story-1M, then freeze the global branches and train the
subject branches on a consistent frame sequence. This en-
ables our model to simultaneously achieve consistency, se-
mantic relevance, and aesthetic quality.

B. Examples of Lay2Story-1M

B.1. Frame Sequence Examples

As shown in Fig. 1, we provide the image data of frame
sequences from the Lay2Story-1M dataset (without show-
ing annotation information such as global captions or lay-
out conditions), with sequence lengths ranging from 4 to 6
frames.

B.2. Examples of Lay2Story-Bench

As shown in Fig. 2, we present examples from Lay2Story-
Bench, including raw frame sequence images and their cor-
responding annotations, which cover global captions, sub-
ject positions, and subject captions for each frame.

C. Preliminary
C.1. Latent Diffusion Models

Latent diffusion models [19] learn a denoising process to
simulate the probability distribution within latent space. To
reduce the computational load, the image x is transformed
into a latent space feature zo = F/(x) using a Variational
Autoencoder (VAE) Encoder E [6]. During the forward dif-
fusion process, Gaussian noise is iteratively added to z; at
timesteps ¢, resulting in z;, according to the equation:

q(2t|z-1) = N (265 /1 = Brze—1, Bel) (1)
where (; represents a sequence schedule. The denoising
process is defined as an iterative Markov Chain that de-
noises the initial Gaussian noise zr € N(0,I) into the
clean latent space zg. The denoising function in LDM is
typically implemented with U-Net [20] or Transformers
[26], trained by minimizing the mean squared error loss:

L=E, ctcno.) |lle = €o(zs;c,t)||3] )

where €y represents the parameterized network for predict-
ing noise, and c denotes an optional conditional input. Sub-
sequently, the denoised latent space feature is decoded into
image pixels using the VAE Decoder D.

C.2. Diffusion Transformers

In the task of consistent image generation, improvements
are often made to the U-Net model [20], with common

optimizations including SD1.5 [19] and SDXL [17]. In
recent years, Transformer-based approaches have gradually
matured in the field of text-to-image generation, with rep-
resentative methods such as Stable Diffusion 3 [3] and
PixArt-ac [2]. These methods have demonstrated the sig-
nificant advantages of Diffusion Transformers in terms of
scalability, an area where U-Net falls short. The core mod-
ule of PixArt-« consists of three parts: first, the linear layers
that generate scale shift parameters for output normaliza-
tion; second, a self-attention mechanism with latent inputs
to enhance generation quality; and third, a cross-attention
mechanism that takes both latent and text embeddings as
inputs, using textual information as a condition to guide the
generation process.

D. Training and Inference Settings

We adopt a similar approach to PixArt-c, using TS5 [18] as
the text encoder with a fixed token length 120. The training
process consists of two stages. In the first stage, we fine-
tune the global branch for the text-to-image task, training
the model with the AdamW optimizer at a learning rate of
2e-5 and a weight decay of 0.03. The model runs for 5
epochs on the Lay2Story-1M dataset using 16 40GB A100
GPUs. In the second stage, we freeze the global branch
and train the subject branch of Lay2Story independently,
using the AdamW optimizer with a learning rate of le-5
and the same weight decay. This stage lasts for 10 epochs
with 32 80GB A100 GPUs. During inference, we follow the
configuration of previous studies, using 25 sampling steps
and setting the class-free guidance coefficient to 4.5.

E. Supplementary Analyses and Experiments
E.1. Computational Complexity Analysis

Table | reports GPU memory usage and inference time.

Table 1. Computational cost. All experiments were conducted on
an 80GB A100 GPU using FlashAttention at a resolution of 720p.

Frame num Inference time (s) Memory (MiB)

4 14.02 29731
8 17.70 33072
16 29.69 46320
32 78.33 62127

E.2. Multi-Subject Experiments

Owing to the high cost associated with data collection
and training, the current experiments are limited to single-
subject narratives. Nonetheless, the proposed pipeline is in-
herently compatible with multi-subject scenarios, as it pre-
serves all subject bounding boxes during the Grounding
DINO detection stage, followed by feature extraction, clus-
tering, and grouping. Multi-subject handling is facilitated



Frame I:
{

Global captions: A girl with red hair is
standing by a ladder in the room,

Subject positions: [788, 142, 1090, 720],

Subject captions: green glasses, red curly
hair, blue hat, colorful short sleeves, surprised
expression,

}

Frame 2:
{

Global captions: A girl with red hair is
standing on stage with a microphone against a
backdrop of blue sky and white clouds and
bright light,

Subject positions: [421, 22, 986, 720],

Subject captions: green glasses, green knot,
strange expression,

}

Frame 1I:

{

Global captions: A young girl whistling indoors in a gymnasium,

Subject positions: [144, 0, 764, 720],

Subject captions: red hair, green pupils, white tracksuit, surprised
expression,

}

Frame 2:
{
Global captions: A young girl standing in a room hands on a railing,
Subject positions: [315, 0, 803, 720],
Subject captions: red hair, green pupils, white tracksuit,
}
Frame 3:
{
Global captions: A young girl standing on a rock beside another girl,
Subject positions: [570, 0, 871, 720],
Subject captions: red hair, yellow sunglasses, little green suspenders

Figure 2. Examples of Lay2Story-Bench. We present examples from the Lay2Story-Bench benchmark, including the original images and
annotations, which consist of global captions, subject positions, and subject captions for each frame.

by concatenating the positional embeddings of all subjects References
and conditioning the model on the corresponding textual
embeddings, thereby maintaining spatial layout and texture
consistency. Comprehensive evaluation under multi-subject
settings is left as an avenue for future exploration.
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