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1. Implementation details
In our implementation, the window size W is 32, the patch
size k is 7, and the number of non-local patches M is 16.
The number of similar pixels p found at each spatial loca-
tion is 20. The learning rate is set to 1e−4 in synthetic noise
experiments and 1e−5 in real-world noise experiments. We
use the Adam Optimizer to fine-tune the network for 10 iter-
ations. For our data-set free single image denoising method,
we utilize a straightforward CNN architecture, comprising
five layers with 64 channels of 3×3 convolutions, each fol-
lowed by a leaky ReLU activation layer. In the final layer,
we use a 1× 1 convolution. We use ℓ2 loss and Adam Opti-
mizer to train the network for 3,000 iterations. The learning
rate is initialized to 0.001 and will decay by a factor of 2
when it reaches 1500, 2000, and 2500 iterations. We imple-
ment and train our network using the PyTorch framework
on an NVIDIA RTX 3090 GPU.

2. Computational Efficiency
We compare the computational efficiency of deep learning
based single image denoising methods. Table 1 details the
average time required for denoising a single image from the
PolyU dataset using different methods, along with the net-
work parameters and PSNR results. Our method not only
achieves the best performance, but its inference time is also
significantly lower than that of the competing methods.

Table 1. Computational efficiency, network parameters, and PSNR
of different methods under the input size 256× 256× 3.

Method DIP S2S ZS-N2N MPI MASH Ours
time (s) 59 1839 9 15 43 1

Network size 2.2 M 1 M 22 K 0.56 M 0.99 M 1.26M
PSNR 34.75 35.97 35.17 36.55 31.97 36.71

3. Ablation Studies
To evaluate the effectiveness of each component of our
method, we conducted the following ablation study on the
Kodak24 dataset for synthetic noise and the PolyU dataset
for real-world noise.
Effect of window size W . To explore the impact of win-
dow size on the proposed method, we report the algorithm’s
performance under different values of M ∈ 24, 32, 40, 48.
Table 2 shows the effect of window size on denoising per-
formance. As illustrated in the table, whether for synthetic
or real-world noise, the effect of different window sizes on
the algorithm’s performance is minimal as long as the win-

dow size is sufficiently large. To balance performance and
computational complexity, we choose W = 32.

Table 2. Denoising PSNR of ablation studies about window size
W .

Window Size 24 32 40 48
PSNR (σ = 25) 30.81 30.84 30.84 30.84
PSNR (σ = 50) 27.00 27.11 27.12 27.05
PSNR (λ = 25) 28.68 28.71 28.71 28.73

PSNR (real world) 36.70 36.71 36.71 36.71

Effect of patch size k. To evaluate the impact of different
patch sizes on the proposed method, we report the algo-
rithm’s performance under different values of k ∈ 5, 7, 9.
Table 3 shows the performance of the algorithm for each
value of k. From the table, it can be observed that the per-
formance significantly improves when increasing k from
5 to 7, while further increasing k results in marginal per-
formance gains. This is because smaller image blocks
may lead to poor block similarity due to noise interference,
whereas larger image blocks make it harder to find poten-
tially similar blocks. Considering the trade-off between per-
formance and computational complexity (k = 7, 0.48s vs.
k = 9, 0.88s), we set k = 7 for all cases in this paper.

Table 3. Denoising PSNR of ablation studies about patch size k.

Patch Size 5 7 9
PSNR (σ = 25) 30.46 30.75 30.78
PSNR (σ = 50) 26.13 27.11 27.18
PSNR (λ = 25) 28.32 28.89 28.93

PSNR (real world) 36.55 36.71 36.74

Effect of the number of non-local patches M . To eval-
uate the impact of different non-local patches on the pro-
posed method, we report the algorithm’s performance under
different values of M ∈ 12, 16, 20. Table 4 illustrates the
correlation between network performance and M . It can be
observed that the algorithm performs best when M = 16.
Therefore, we choose M = 16 in this paper.
Effect of the number of similar pixels p. Table 5 illus-
trates the correlation between network performance and the
number of similar pixels, p. It can be observed that as p in-
creases, the denoising performance of the network initially
improves but then declines. This phenomenon can be at-



Table 4. Denoising PSNR of ablation studies about non-local
patches M .

Non-local Patch 12 16 20
PSNR (σ = 25) 30.74 30.75 30.73
PSNR (σ = 50) 26.08 27.11 27.07
PSNR (λ = 25) 28.86 28.89 28.88

PSNR (real world) 36.69 36.71 36.71

tributed to the fact that increasing p enhances the network’s
learning and generalization capabilities by expanding the
training sample pool. On the other hand, excessively high p
values reduce the similarity between pixels, leading to a de-
crease in the similarity of clean content in pseudo-samples
used for fine-tuning, which negatively impacts network per-
formance. Based on these observations, we select p = 20
in our study.
Effect of Adaptation Iterations for Each Image. In this
section, we investigate the impact of different adaptive it-
erations on each image. As shown in Table 6, we com-
pare the TTA performance of our method using different
iteration counts for each image. The test time includes the
time to construct the pixel bank. When the number of itera-
tions is small, the TTA Denoising model is unable to effec-
tively learn how to remove noise from the images. Con-
versely, when the iteration count is too high, the perfor-
mance improvements of TTA Denoising diminish. Addi-
tionally, for lower noise levels, the TTA Denoising model
converges more quickly, while for higher noise levels (e.g.,
σ = 50, λ = 10), the network requires more iterations to
achieve better performance. Therefore, for higher noise lev-
els (e.g., σ = 50, λ = 10), we set the iteration count to 100,
whereas for other cases, we set it to 10.

4. More Visualization Results
In this part, we show more visualization comparison results
of different denoising methods on test images of the Ko-
dak24, MacMaster18, and KVASIR20 datasets. Figures 1,
2, 3, 4, and 5 show the denoising performance of differ-
ent comparison methods. From these figures, it can be seen
that while the S2S method achieves higher PSNR scores in
some denoised images, it often produces overly smooth im-
ages. On the other hand, ZS-N2N performs poorly at higher
noise levels, with the denoised images still containing a sig-
nificant amount of noise. Visually, the images denoised by
our method appear more pleasant.



Table 5. Denoising PSNR of ablation studies about similar pixels p.

Similar Pixel 2 4 6 8 10 15 20 25 30
PSNR (σ = 25) 28.21 29.74 30.26 30.43 30.56 30.63 30.75 30.75 30.65
PSNR (σ = 50) 22.26 24.78 25.84 26.35 26.69 27.05 27.11 27.11 26.82
PSNR (λ = 25) 25.30 27.34 28.19 28.49 28.76 28.86 28.89 28.87 28.55

PSNR (real world) 36.78 36.79 36.79 36.79 36.78 36.75 36.71 36.67 36.62

Table 6. Average PSNR scores for Gaussian and Poisson denoising on Kodak24 and real-world noise on PloyU. The best results are in
bold.

Iterations Gaussian Poisson Real-world Time (s)
σ=10 σ=25 σ=50 λ=50 λ=25 λ=10

0 32.66 29.70 20.94 29.62 24.82 19.94 36.10 0.00
1 33.41 30.50 22.80 30.42 26.51 22.01 36.29 0.50
2 34.21 30.86 24.59 30.81 27.62 23.85 36.39 0.51
5 34.78 30.82 25.71 30.75 28.56 25.21 36.50 0.55

10 34.75 30.75 26.39 30.51 28.89 25.82 36.71 0.62
20 34.47 30.43 26.65 30.39 28.85 26.10 36.88 0.74
50 34.13 30.35 26.94 30.35 28.98 26.49 36.90 1.12
100 33.82 30.27 27.11 30.26 28.99 26.64 36.88 1.79
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Figure 1. Gaussian denoising on Kodak24 images. The numbers in parentheses are PSNR scores (dB). Upper row: σ = 10, middle row:
σ = 25, lower row; σ = 50.
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Figure 2. Poisson denoising on McMaster18 images. The numbers in parentheses are PSNR scores (dB). Upper row: λ = 50, middle row:
λ = 25, lower row; λ = 10.
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Figure 3. Gaussian denoising on MacMaster18 images. The numbers in parentheses are PSNR scores (dB). Upper row: σ = 10, middle
row: σ = 25, lower row; σ = 50.

Noisy(15.91) DIP(26.29) S2S(28.28) MPI (25.84)ZS-N2N(26.40) Ours(27.83)GT

Noisy(17.93) DIP(24.67) S2S(26.88) MPI (26.30)ZS-N2N(25.79) Ours(27.24)GT

Noisy(20.79) DIP(32.92) S2S(34.02) MPI (33.33)ZS-N2N(32.22) Ours(34.17)GT

Figure 4. Poisson denoising on Kodak24 images. The numbers in parentheses are PSNR scores (dB). Upper row: λ = 50, middle row:
λ = 25, lower row; λ = 10.
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Figure 5. Gaussian denoising on KVASIR20 images. The numbers in parentheses are PSNR scores (dB). Upper row: σ = 10, middle row:
σ = 25, lower row; σ = 50.
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