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A. Implementation details
Training. We set the number of transformer blocks N =
12 with a latent dimension of 2, 048. We used a batch size
of 2, 048 and Adam optimizer [35] with a learning rate of
1e→ 4 to train our model. The model is trained on a single
A100 GPU for 20 hours. The backbone transformer of our
model is depicted in Figure S8. All the style space share the
same dimensionality of 768.
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Figure S8. The backbone transformer. The condition consists
of time step t and chronological information from the artwork y.
These conditions are concatenated with the style embedding.

Using year as condition. This is a deliberate conceptual
choice: instead of modeling stylistic evolution through static,
human-defined categories, we treat it as a continuous phe-
nomenon grounded in visual data. Categorical labels such
as “Impressionism” are often coarse, overlapping, or incon-
sistent, especially in modern periods, and struggle to capture
subtle stylistic shifts. More importantly, such discrete com-
partments limit our ability to trace how styles evolve, merge,
or diverge over time. Treating style as a continuous function
of year allows us to model artistic change as a fluid trajectory
rather than as jumps between isolated labels.

While continuous conditioning introduces some ambi-
guity, this reflects the complexity of real-world art history,
where multiple styles often coexist within the same period.
For evaluation and reference, we include artist and style la-
bels in the dataset, though they are not used during training
or inference.

Style Representations. To systematically evaluate the suit-
ability of different style representations, we considered four
candidate feature spaces: CLIP [62], CSD-S, CSD-C [79],

and DINOv2. We evaluated their effectiveness on our pro-
posed dataset using standard retrieval metrics—mean Aver-
age Precision at top-k (mAP@k) [52] and Recall@k [31],
following the evaluation protocol introduced in CSD [79].

As shown in Table S3, CSD-S achieves the highest perfor-
mance in style retrieval, while CLIP performs slightly better
in retrieving artworks by year. CSD-S, CSD-C, and CLIP all
exhibit competitive performance. In contrast, DINOv2 lags
behind, likely due to its emphasis on semantic content over
stylistic variation.

In addition to retrieval metrics, we examined the struc-
ture of the embedding spaces via UMAP [48] visualizations,
as shown in Figure S9. These projections highlight stylis-
tic grouping behaviors across feature spaces: CSD-S em-
beddings show the most distinct structure, while CLIP and
CSD-C maintain moderate separation. DINOv2 embeddings
appear less organized but still retain some stylistic signal.

We also demonstrate an added benefit of using CLIP: it
can be integrated with unCLIP [65] to generate plausible vi-
sual transformations of projected embeddings, as illustrated
in Figure S15.

B. Limitations
Our study highlights a novel and complex task, using gen-
erative models to study how artistic styles flow across time,
which presents several limitations.

Lack of well-established metrics. There is no established
metric to evaluate this task, as the ground truth for stylis-
tic correspondences across centuries is inherently absent.
While we explored retrieval-based alignment and proposed
measures as compactness ω and triplet consistency ε to as-
sess consistency of temporally mapped clusters, these only
partially address the underlying challenge.

Eurocentric dataset. Our proposed dataset primarily re-
flects Western artistic traditions, with a strong emphasis on
European artworks. This curation choice was influenced by
the domain expertise of our collaborators, ensuring histori-
cal accuracy and annotation quality. However, it introduces
a cultural bias that may limit generalization to underrepre-
sented artistic traditions. Addressing this imbalance is an
important direction for future work.

Reliance on certain feature spaces. Although we trained
and evaluated the model using four different style embed-
dings of varying quality, only the CLIP embedding currently
supports rendering back to image space via the unCLIP



model [65]. While this enables qualitative inspection of tem-
poral transformations, it limits our ability to visually analyze
outputs from stronger stylistic representations such as CSD-
S or CSD-C. Training unCLIP-like decoders for these spaces
could offer more accurate visualizations in future iterations.
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Figure S9. 2-D UMAP for four candidate style spaces. We use the
same subset of samples for all four plots but colored differently
according to their ground truth style and year label. 800 samples
were used for the top-8 prominent styles with a creation year cover-
age over 5 centuries.

C. Qualitative comparison
C.1. Ours vs. SD and FLUX
As mentioned in the main paper, when using CLIP as the
style space, we can combine our model with a pre-trained
Unclip model to render our generated CLIP embeddings
(see Figure S15). Even with slightly worse performance
on retrieval and mapping styles through time, this property
makes it more attractive.

In the following, we present the reader some uncurated
samples from individual centuries generated by Stable Dif-
fusion and ours in Figure S10, Figure S12, and Figure S11.
They are a subset of samples that we used to compute the
metric in Table 2. For SD [66], SDXL [60], and FLUX [38]
the text prompts are {"a professional artwork from year xx",
"a professional painting created in xx", "An artwork from the
xx th century"}. For our proposed method, we use random
year numbers with the century as y to get the style embed-
ding for the given year and feed it to the Unclip model to
generate the samples for visualizations. We use the Stable
Unclip model to transfer clip embeddings to RGB images.

Our model effectively captures the stylistic nuances over
time, yielding visually appealing outcomes. This is also sup-
ported by the quantitative analysis of FID scores presented
in the main paper (see Table 2). In contrast, alternative meth-
ods generate aesthetically pleasing artworks for the 16th,
17th, and 18th centuries but exhibit limited diversity across
samples. It is important to note that they fail to encapsulate
the evolving trends in art for later periods, producing only
some old photographs of those times.

C.2. Matching Style Distributions
Besides using CLIP space with unCLIP to render samples,
we also show that the other style embeddings produced by
our method align well with the ground truth style distribu-
tion for different times. We show a few histogram plots for
CSD-S embedding with only chronological condition y given
in Figures S16 to S18. We observe a good match between
the distributions formed by the generated embedding and
the ground truth over styles, whose information was never
provided to the model during training or inference. They are
classified using k-NN and compared against the underlying
distribution formed by ground-truth style labels. Figure S16
illustrates that our model closely replicates the ground-truth
style distributions of the corresponding century when gener-
ating unconditionally. Similarly, Figures S17 and S18 shows
that even when conditioning on existing style embeddings,
the mapped distributions remain consistent with ground-truth
labels, preserving recognizable hubs of retrieved styles.

D. Dataset details
The curated dataset proposed in the paper is under the most
open Creative Common CC-BY 4.0. The original images of
artworks are under their copyright.

The data was scraped from public websites using Sele-
nium* and Beautiful Soup* in a similar way as LAION [74]
(indexes to the internet in the form of URLs to the original
image and meta information). The data was obtained from
the following data sources:
• WikiArt.org, an online visual arts encyclopedia,
• Meisterdrucke, an art reproduction company with a public

art gallery,
• Google Arts & Culture, an online art collection,
• Kaggle Best Artworks of All Time, a public dataset,
• Art UK, an online art collection,
• Tate, an institution that houses art galleries,
• The Museum of Modern Art (MoMA), an art museum,
• Web Gallery of Art, a virtual museum and searchable

database of arts.
After obtaining the corresponding style embeddings, we
subsequently discarded all the images of those paint-

*https://www.selenium.dev/
*https://www.crummy.com/software/BeautifulSoup/

https://www.selenium.dev/
https://www.crummy.com/software/BeautifulSoup/


Style Style Year Year
Recall@k ↑ mAP@k ↑ Recall@k ↑ mAP@k ↑

Style space 1 2 5 10 100 5 10 100 1 2 5 10 100 5 10 100

DINOv2 base [55] 48.59 60.17 73.67 81.44 95.68 55.61 52.48 34.04 52.69 60.26 70.97 79.44 97.13 57.23 54.16 31.96
CSD-C ViT-L [79] 60.14 72.33 85.01 91.03 98.35 66.95 63.46 45.90 59.10 68.66 80.95 88.53 98.89 64.52 60.66 39.03

CLIP ViT-L [63] 59.53 72.19 85.09 91.01 98.61 66.69 63.21 45.85 60.82 70.32 82.15 89.39 98.95 66.02 61.91 39.44
CSD-S ViT-L [79] 60.32 72.47 85.15 91.08 98.68 67.10 63.59 46.07 59.07 68.75 81.12 88.69 98.93 64.54 60.65 38.96

Table S3. Style spaces evaluated by mAP and Recall metrics on our dataset. We omitted mAP@1 as it is equivalent to Recall@1.

CSD-S CLIP
SDEdit [49] Ours SDEdit Ours

Average Recall@k ↑ Average Recall@k ↑ Average Recall@k ↑ Average Recall@k ↑
Artistic Styles 1 5 10 ω ↓ ε ↑(%) 1 5 10 ω ↓ ε ↑(%) 1 5 10 ω ↓ ε ↑(%) 1 5 10 ω ↓ ε ↑(%)

Rococo 6.30 15.78 27.51 0.5716 45.6 72.45 85.12 90.34 0.0235 84.8 5.12 13.67 22.45 0.4623 44.8 67.75 80.34 89.89 0.0182 70.2
Impressionism 5.30 13.39 24.67 0.6051 34.5 64.99 76.25 78.67 0.0241 75.8 4.33 12.67 20.33 0.4687 30.4 63.50 78.25 82.75 0.0183 75.5
Realism 3.67 12.40 22.99 0.6125 45.6 58.50 69.25 75.37 0.0253 68.6 3.00 12.64 21.52 0.4715 38.9 56.00 71.25 75.50 0.0184 67.4
Romanticism 1.67 1.06 19.33 0.6305 37.8 58.54 69.50 76.75 0.0297 58.4 2.37 8.31 17.32 0.4842 41.2 57.86 71.51 75.70 0.0185 59.6
Post-Impressionism 2.17 7.68 16.44 0.6363 42.9 67.33 82.23 88.00 0.0245 84.5 2.74 9.60 14.80 0.4947 43.5 66.25 80.75 87.57 0.0182 77.8
Fauvism 1.24 4.53 11.06 0.3486 28.7 55.67 65.89 70.23 0.0302 52.7 1.56 5.34 9.12 0.5917 25.7 55.34 70.12 74.56 0.0190 47.7
Expressionism→ 2.20 5.38 12.65 0.7415 36.2 70.33 82.33 86.67 0.0252 74.2 1.09 6.33 10.47 0.5824 34.6 58.66 75.67 81.38 0.0189 65.9
Surrealism→ 1.80 3.49 10.54 0.7943 23.4 50.78 60.45 68.56 0.0315 46.3 1.23 4.78 8.34 0.6025 22.3 54.78 69.45 73.89 0.0192 41.3

Table S4. Quality of the time matching when mapping artworks through time The mean value of multiple time jumps is calculated for a year
range of [→100, 100] with 25 step size. We sampled a compact subset of a hundred samples for each style to calculate the metrics. For ω , we
used the nns[: 25] neighbors as positive samples and nns[50 : 75] as the negative samples for each chosen anchor, where nns denotes its
nearest neighbors. Underscore denotes the best value column-wise. *: for these styles, we only perform jumps up to +50 as a larger jump
will result in a region without any ground-truth samples.

ings/artworks. Any researcher using the datasets must re-
construct the image data by downloading the subset they are
interested in. We maintain a list of valid URLs to the original
image as part of the meta-information for each sample. As
artworks were obtained from various data sources and the
information accompanying them varies, not all images come
with the complete set of metadata.
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Figure S10. Uncurated samples generated by our method. Each row represents a collection of unconditionally generated artworks from a
specific century.
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Figure S11. Uncurated samples generated by SD1.5. Each row represents a collection of randomly generated artworks from a specific
century.
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Figure S12. Uncurated samples generated by SD2.1. Each row represents a collection of randomly generated artworks from a specific
century.

Figure S13. Uncurated samples of SDXL. Each row represents a collection of randomly generated artworks from a specific century.



Figure S14. Uncurated samples of FLUX.1-schnell. Each row represents a collection of randomly generated artworks from a specific century.
Albeit its better image quality and details due to its model size and much stronger backbones, FLUX still fails to capture the underlying
artistic style distribution, resulting in a limited variety of styles.

Figure S15. Generated samples from Unclip [65, 66]. The styles are well aligned with the reference image. The large image on the left is the
reference image. The corresponding four small images are Unclip results from the same reference image.



Figure S16. Discrete style distributions of unconditionally generated embeddings (CSD-S) for different periods classified by nearest-
neighbors. For each generated sample, style labels are predicted by a 10-nn classifier (upper row). Log-scale of absolute count is used to
make small values more visible. The bottom row shows the corresponding distribution of ground truth labels. This denotes our model’s
ability to match the artistic style distortion with the given century. The x-axis depicts the aligned style labels.

Figure S17. Discrete style distributions of artworks transformed from 18th to 19th (left) and 19th to 20th (right) century. Distributions are
retrieved in the same way as in Figure S16 but the conditioning is based on style embeddings from an earlier century instead of Gaussian
noise. Similar hubs of retrieved styles are visible.

Figure S18. Discrete style distributions of artworks transformed from 16th to 17th (left) and 17th to 18th(right) century. Style Distributions
for further centuries as in Figure S17. Similar hubs of retrieved styles are visible.
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