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S1. Detailed criteria for U2WO

Construction of Base Classes. As per the standard few-

shot setting [3, 11, 12, 42, 51], we assume access to base

classes. Unlike previous FSOR works, our U2WO collects

class descriptions (i.e., class label name) only. We col-

lect 1000 label names for constructing the word embedding

space and use the known class name and outlier text as the

base classes. Specifically, to avoid unknown class names

in downstream tasks, we first use the known class names as

the base classes. For the large-scale benchmarks (i.e., Im-

ageNet), the abundance of known class names suffices to

construct the word embedding space. However, the word

embedding space is constrained to small benchmarks (i.e.,

CIFAR-based benchmarks) with only access to a few known

class names. To address this limitation, we select 1000 out-

lier text from WordNet [26].

Outlier Text Filtering. We filter 1,000 distinct class names

as the outlier text. Specifically, we employ a subset of

WordNet (a complete labeling system) as an initial and gen-

eral word source, i.e., the label names from ImageNet-21K

[35]. To ensure that we do not leverage any linguistic in-

formation about the unknown classes, we exclude words

related to these unknown classes by using the Synset IDs

from WordNet [26]. This strategy guarantees that any la-

bels associated with unknown classes are entirely omitted.

It’s important to note that we apply the same word source

across all tasks, and our experiments demonstrate that this

word source generalizes well across various applications.

Known Basis and Open Basis. We explore two variants of

U2WO: U2WO with Known Basis (UKB), where the base

class names are drawn from known classes; and U2WO with

Open Basis (UOB), where the base class names are sourced

from outlier text. First, we clarify that the core principle of

UTL is to construct the semantic space based primarily on

known class names. The incorporation of WordNet labels is

only necessary when the number of known classes is insuf-

ficient, for example, in the C10 benchmark, which contains

only six known class names. Alternatively, the universal

basis can be constructed directly from the textual represen-

tations of the known classes, and the use of WordNet-based

outlier text is not a strict requirement. Furthermore, for

small-scale benchmarks with relatively few unknown cat-

egories, it is often easy to collect a sufficient number of se-

mantically diverse class names from external sources that

are explicitly disjoint from the predefined unknown cate-

gories. This makes the construction of a universal semantic

basis both practical and effective in real-world open-set sce-

narios.

Extraction of Word Embedding. We feed the 1000 label

names to the CLIP and extract the corresponding word em-

beddings. Then, we extract the 1000 embeddings with a

fixed token length. In our experiments, we fix the length to

30.

S2. Experimental Setting

Datasets. We conduct experiments on benchmark datasets

for FSOR. Firstly, we construct the standard benchmark for

CLIP-based FSOR based on the traditional OSR standard

benchmarks [3, 5, 6, 15, 24, 27, 40, 42, 47, 53]. Specifically,

it covers six datasets: CIFAR10 (C10) [16]: Six known

classes and four unknown classes are randomly sampled.

CIFAR10 + 10 (C10 + 10), CIFAR10 + 50 (C10 + 50): For

the CIFAR10 + N experiments, four classes from CIFAR10

are used for training, while N classes from CIFAR100 [16]

are used for evaluation, where N denotes either 10 or 50

classes. CIFAR100 (C100) [16]: Twenty known classes

and eighty unknown classes are randomly sampled. Tiny-
ImageNet (TINY) [17]: Twenty known classes and one

hundred eighty unknown classes are randomly sampled for

evaluation. TinyImageNet-Hard (TINY-H) [17]: Forty

known classes and one hundred sixty unknown classes are

randomly sampled for evaluation. The above six bench-

marks are evaluated over five random splits. Then, we con-

struct two benchmarks with the two widely used datasets in

FSOR [3, 11, 12, 20, 29, 42, 51]. MiniImageNet (MiniIN)
[41]: Sixty-four known classes and thirty-six unknown

classes are used for evaluation. MiniImageNet contains

one hundred classes, and the classes are split as (64, 16,

20) for meta-training, meta-validation, and meta-testing, re-

spectively. Each class has six hundred images. We extended

the split as (64, 16+20) for known and unknown classes, re-

spectively. TieredImageNet (TieredIN) [34]: Three hun-

dred fifty-one known classes and two hundred fifty-seven

unknown classes are used for evaluation. TieredImageNet

contains six hundred eight classes, split into (351, 97, and

160). We extended the split as (351, 97+160) for evalua-

tion. Finally, we employ the more challenging large-scale

benchmark datasets, which involve long-tail datasets with

semantic shift benchmarks. ImageNet-200 (IN-200) [43]:
Following the dataset preparation [5, 43], we selected the

first 200 classes of the ImageNet-1k dataset [7] as known

and the remaining 800 ones as the unknown. iNaturalist
(iNa) [39]: We simplify the long-tail setting [47], we ran-

domly select 200 classes as known classes and the remain-

ing 800 classes as unknown. ImageNet-Easy (IN-Easy)
and ImageNet-Hard (IN-Hard) [40]: A large-scale eval-



Table S6. Comparison (%) of our UTL with different methods on various benchmarks under 16-shot setting in terms of OSCR. The best

and second-best results are highlighted in bold and underline, respectively.

Methods(ViT-B/16) C10 C10+10 C10+50 C100 TINY TINY H Average* Average

Training-free

CLIP [32] 88.08±2.23 89.33±2.56 89.89±1.78 72.40±4.73 79.16±3.39 71.68±3.57 86.62 81.76

CLIP-PE [32] 89.48±2.22 92.02±2.09 92.06±1.47 71.99±4.91 80.58±3.01 73.68±3.23 88.54 83.30

LMC [31] 93.60±1.50 96.80±0.70 96.40±0.40 - 80.60±3.40 - 91.85 -

Few-shot close-set methods (16-shot setting)

CoOP [54] 89.29±2.40 95.2±0.90 93.28±1.30 73.42±2.08 81.51±3.45 75.47±2.13 89.82 84.70

CoCoOp [13] 90.78±2.66 93.87±1.75 92.65±1.60 73.45±4.36 82.42±2.61 76.12±2.26 89.93 84.88

Few-shot OSR methods (16-shot setting)

M-Tuning [19] 91.72±1.72 95.74±0.72 93.78±1.41 74.02±4.00 82.02±3.26 75.89±2.40 90.81 85.53

UTL (Our) 93.44±1.20 96.7±0.58 95.32±0.85 77.60±3.65 85.19±2.29 78.31±2.00 92.66 87.76

Table S7. Comparison (%) of our UTL with different methods on challenging benchmarks under 16-shot setting in terms of close-set
performance (ACC). The best and second-best results are highlighted in bold and underline, respectively.

Methods(ViT-B/16) Mini-IN Tiered-IN IN200 iNa Places IN IN LT Average

Training-free

CLIP [32] 91.60 69.00 74.50 29.90 36.40 66.80 66.80 62.14

CLIP-PE [32] 92.30 70.70 75.50 29.80 57.50 68.80 68.80 66.20

Few-shot close-set methods

CoOp (16-shot setting) [54] 94.07 75.57 76.77 65.40 62.00 71.70 71.83 73.91

CoCoOp (16-shot setting) [13] 94.53 74.50 77.33 42.30 61.20 71.10 71.10 70.29

Few-shot OSR methods (16-shot setting)

M-Tuning (16-shot setting) [19] 94.33 75.50 76.62 64.80 61.70 71.60 83.26 75.40
UTL (16-shot setting) (Our) 94.50 75.67 76.90 67.60 61.60 72.10 71.70 74.30

uation for category shift and open-set splits based on se-

mantic distances to the ImageNet. The known is ImagNet-

1k. The unknown samples are chosen from the disjoint

set of ImageNet-21K-P [35]. The total semantic distances

to the categories of ImageNet split the ‘Easy’ and ‘Hard’

categories. Each unknown set includes 1000 categories.

ImageNet-LT (IN-LT) [21]: As a longtailed dataset, in-

cludes 1000 known classes from ImageNet-2012, and 360

unknown classes from the validation set of ImageNet-2010.

Places365-Standard [23]: 365 scene classes split as (100,

265). 100 randomly selected classes as known, and the

other 265 as unknown.

Evaluation Metrics. Following previous works [3, 11, 12,

42, 51], we evaluate the model’s closed-set performance

with accuracy (ACC) and evaluate the open performance

with the area under the ROC curve (AUROC) for unknown

class detection. The closed-set performance is the classi-

fication capacity via known samples, and the open perfor-

mance is the unknown detection capacity via both known

and unknown samples. As the previous few-shot meth-

ods [10, 13, 45, 46, 50, 54, 55] have already demonstrated

promising closed-set performance, the challenges lie in

open performance.

Implementation Details. In our experiments, we employ

the available vision backbones in CLIP, including RN50

and ViT-B/16. The "[CLASS]" is placed at the end of

the prompts. The number of the unknown word tokens (M )

is set to 20, and the number of context tokens (P ) is set to

16. The number of universal word bases (F ) is set to 100.

The weights matrix W is initialized with random values

drawn from a zero-mean Gaussian distribution with a stan-

dard deviation of 0.02. We employ the SGD optimizer with

an initial learning rate of 0.002, decayed according to the

cosine annealing rule, following the default setup in CoOp.

The maximum number of epochs is set to 50, and the batch

size is set to 32. All experiments are conducted on a single

NVIDIA Tesla V100 GPU. The source code will be publicly

available.

S3. Compared Methods

To evaluate the performance of our UTL in a few-shot set-

ting, we reconstruct some baselines for comparison. First,

we compare UTL with zero-shot prompt learning methods.

CLIP [32]: Zero-shot learning (ZSL) prediction with the



Table S8. Comparison (%) of different methods on all-data settings in terms of AUROC. The best and second-best results are highlighted

in bold and underline, respectively.

Methods (ViT-B/16) Publication C10 C + 10 C + 50 TINY IN-200 IN-LT Average

Traditional OSR methods

CPN (all-data) [43] TPAMI’20 82.80 88.10 87.90 63.90 79.56 – –

RPL (all-data) [5] ECCV’20 86.10 85.60 85.00 70.20 91.70 55.20 78.97

ARPL (all-data) [6] TPAMI’21 91.00 97.10 95.10 78.20 94.90 – –

PMAL (all-data) [24] AAAI’22 95.10 97.80 96.90 83.10 93.90 71.70 89.75

All-You-Need (all-data) [40] ICLR’22 93.60 97.90 96.50 83.00 95.71 59.18 87.65

(ARPL+CS) (all-data) [40] ICLR’22 93.90 98.10 96.70 82.50 96.16 62.55 88.32

CLIP-based OSR methods

M-Tuning (all-data) [19] arXiv’23 96.29 96.28 96.17 87.30 96.47 78.89 91.90

VP-CK (all-data) [14] AAAI’24 95.20 97.90 97.10 - 83.10 - -

UTL (all-data) Ours 96.84 99.34 97.79 91.15 98.50 87.64 95.21

Table S9. Comparison (%) of different methods on all-data settings in terms of the closed-set ACC. The best and second-best results are

highlighted in bold and underline, respectively. Average∗ is the mean ACC across datasets excluding IN-LT.

Methods (ViT-B/16) Publication C10 C + N TINY IN-200 IN-LT Avarage Average*

Traditional OSR methods

CPN (all-data) [43] TPAMI’20 92.90 94.80 81.40 82.20 37.10 77.68 87.83

RPL (all-data) [5] ECCV’20 95.10 95.50 81.70 66.20 39.70 75.64 84.63

ARPL (all-data) [6] TPAMI’21 94.50 94.70 76.10 82.30 39.70 77.46 86.90

PMAL (all-data) [24] AAAI’22 97.50 97.80 84.70 84.10 42.90 81.40 91.03

All-You-Need (all-data) [40] ICLR’22 94.10 95.92 71.20 71.30 – – –

ARPL+CS (all-data) [40] ICLR’22 94.25 97.07 76.84 79.02 – – –

CLIP-based OSR methods

M-Tuning (all-data) [19] arXiv’23 96.30 96.23 90.70 81.90 81.74 89.37 91.28

UTL (all-data) Ours 97.36 98.30 94.32 81.20 68.10 87.86 92.80

handcrafted templates, "a photo of a [CLASS].".

CLIP with Prompt Engineering (CLIP-PE) [32]: Zero-

shot learning (ZSL) prediction with 7 ImageNet-select

handcrafted templates. LMC [31]: Training-free method

for open-set recognition. We report the performances from

the corresponding sources.

Then, close-set few-shot prompt learning methods:

CoOp [54] and CoCoOp [13]: These experiments are per-

formed using the publicly released code. In CoOp, the class

token is placed at the end, and we set the context length

to 16 using random initialization. For CoCoOp, we fix the

context length to 4 and initialize the context vectors using

the pre-trained word embeddings of "a photo of a".

For the methods (i.e., CLIP, CLIP-PE, CoOp, and CoCoOp)

that did not conduct experiments under the open-set setting,

we re-implement them using publicly available code and re-

port the results.

Next, the few-shot out-of-distribution (OOD) methods:

LoCoOp [28], ID-like [1], NegPromt [18]. These meth-

ods employed the OOD setting and did not report the re-

sults on our compared benchmarks, so we reproduced them

by using publicly available code. Particularly, the scoring

function in MCM [27] was further adapted in LoCoOp. Lo-

CoOp showed that LoCoOp-MCM is inferior to LoCoOp-

GL, where the latter (LoCoOp-GL) was discussed and com-

pared in our work. Following the few-shot open-setting

methods: M-Tuning [19]: The [class] is placed in the

middle of prompts, whose length L is set as 10. For perfor-

mance evaluation, we use the maximum softmax probabil-

ity (MSP). For M-tuning, we reset the context length to 16

and placed the [class] in the end. We reproduced it to

compare it with other methods across all benchmarks. The

above methods are compared in a few-shot setting. Finally,

we compared UTL with traditional OSR methods: CPN
[43], RPL [5], ARPL [6], ARPL+CS [40], PMAL [24],
and All-You-Need [40], VP-CK [14]. These methods are

compared under an all-data setting.

S4. More results of 16-shot setting

OSCR results. As AUROC and ACC are two widely

used metrics for OSR, we mainly report results in terms

of them for comparison. To further evaluate the effect of



Table S10. Comparison(%) of CLIP-based methods with the backbone of RN50 on standard benchmark in terms of AUROC. The best

results are highlighted in bold. Average∗ is the mean AUROC across datasets excluding IN-Easy and IN-Hard.

Method (RN50) C10 C10+10 C10+50 TINY Average* IN-Easy IN-Hard Average

Train-free methods

CLIP [32] 75.80 86.72 85.21 74.59 80.58 70.14 58.22 75.11

Few-shot methods

CoOp (16-shot setting) [54] 76.93 90.29 87.66 77.67 83.14 69.52 58.44 76.75

Few-shot OSR methods

UTL (16-shot setting) (Our) 85.31 96.60 93.85 81.01 89.19 78.64 69.70 84.19
UTL (all-data setting) (Our) 89.52 98.40 96.44 85.12 92.37 - - -

our UTL on standard benchmarks under the 16-shot setting,

we also present the OSCR results in Tab. S6, where our

UTL method still achieves the best average results across

all benchmarks. Besides, all results in terms of OSCR show

a similar trend to those in terms of AUROC.

ACC results. The close-set performance of different meth-

ods is presented in Tab. S7. Our UTL achieves compet-

itive performance on the large-scale benchmarks. Com-

pared with the CLIP-based methods, our UTL achieves the

second-best performance on average and is slightly inferior

to R-Tuning. The reason mainly lies in that R-Tuning in-

troduces a CTT strategy to divide the known classes into

many small groups. Such a strategy significantly improves

closed-set accuracy on the IN-LT dataset. When the results

on the IN-LT dataset are excluded, our UTL achieves the

best performance under an all-data setting. These results

above clearly demonstrate the effectiveness of UTL again.

S5. More results of all-data Settings
To evaluate the effect of our UTL on all-data settings, we

conduct experiments on various benchmarks with the back-

bone of VIT-B/16. The results of AUROC and ACC are pre-

sented in Tab. S8 and Tab. S9. As described in Tab. S8, our

UTL achieves the best open-set performance on average.

Particularly, our UTL performs an average 7.56% gain over

the best traditional OSR method, All-You-Need. Compared

with the CLIP-based OSR methods, our UTL performs a

3.31% improvement over M-Tuing. Similar to the 16-shot

setting, our UTL achieves the second-best closed-set per-

formance on average under the all-data setting as demon-

strated in Tab. S9. Our UTL performs inferior to M-Tuning

on close-set performance. Our UTL achieves the best close-

set performance across benchmarks, excluding IN-LT. The

above results again verify the effectiveness of our UTL in

both known classification and unknown detection tasks.

S6. Additional Results with Backbone of RN50
To verify the effectiveness with different backbones, we

compare CLIP-based methods with the backbone of RN50

Table S11. The AUROC and ACC results of UTL with various λ
on TINY.

λ 0.1 0.3 0.5 0.7 0.9

ACC 91.59 91.48 91.19 91.17 91.13

AUROC 89.43 89.24 89.71 90.06 90.64

Table S12. The AUROC results of UTL with various numbers of

universal word basis F on IN-Easy.

F 20 30 70 100 200 300

AUROC 81.46 81.97 82.05 82.33 82.32 82.04

on standard OSR benchmarks. The open-set performance

is presented in Tab. S10. Our UTL performs best on stan-

dard benchmarks and outperforms the CLIP-based meth-

ods by a large margin. Compared with CLIP and CoOp,

UTL obtains an average of 8.61% and 6.05% improve-

ment. Note that CoOp achieves 2.56% improvement over

Zero-shot CLIP, which indicates context optimization under

the closed-set setting improves the open set performance

with RN50. UTL achieves 3.18% improvement gains in

the all-data setting over the 16-shot setting. The above re-

sults demonstrate the effectiveness of UTL with backbone

RN50, which shows strong generalization and good flex-

ibility on both 16-shot and all-data settings with various

backbones on standard benchmarks. To further evaluate the

effectiveness of RN50, we compare it with several CLIP-

based methods on IN-Easy and IN-Hard. UTL outperforms

existing CLIP-based methods significantly, indicating re-

markable effectiveness in extensive semantic shift open set

benchmarks. For instance, UTL surpasses CLIP and CoOp

by 9.08% and 7.44% on average, respectively.

S7. Additional Ablation Study
Effect of balance coefficient (λ). To evaluate the

effect of universal word basis λ, we conduct experi-

ments with the backbone of ViT-B/16 by varying λ ∈



Table S13. Comparison (%) of MSP with MLS on UTL across

various benchmarks.

ViT-B/16 C10 C10 + 10 C10 + 50 TINY

MSP 96.37 98.73 97.27 89.74
MLS 94.64 98.25 96.57 88.26

IN-200 IN-LT IN-Easy IN-Hard Average

92.69 75.10 72.37 61.92 82.90

98.22 89.11 82.33 76.51 88.93

Table S14. Comparison (%) of FSOR methods on MiniIN.

5-way N -shot 1-shot 5-shot

(RN50) ACC AUROC ACC AUROC

SEMAN-G [11] 68.24 72.85 83.48 82.07

GEL [42] 68.26 73.70 83.05 82.29

OSLO [3] 71.73 74.92 83.40 82.59

UTL (Our) 89.93 87.05 94.03 89.59

{0.1, 0.3, 0.5, 0.7, 0.9} and set ε as 0.1, the number of un-

known words N as 1 on TINY. As shown in Tab. S11,

we observe that the variation of λ has a limited impact on

closed performance, and the AUROC slightly declines with

the increase of helambda, we set λ as 0.9 on the various

benchmarks.

Number of universal word basis F. After randomly se-

lecting T = 1000 words, U2WO employs Top-F bases of

PCA as universal word basis, and we assess the effect of F
by varying F ∈ {20, 30, 70, 100, 200, 300} with ε = 0.001
and N = 5 on IN-Easy dataset. As shown in the third part

of Tab. S12, we observe that F has little impact on the final

performance, and F = 100 generally leads to the best per-

formance. We set F to 100 throughout all the experiments.

MSP vs. MLS. Taking the Maximum Logits Score (MLS)

as a confidence score, we can extend the classifier as:

ŷ =

⎧⎨
⎩
argmax
k∈[1,K]

sim (T (tk) , I(x)) , if similarity ≥ θ

unknown, otherwise,
(9)

where θ is the preset threshold. To evaluate the perfor-

mance of the different score rules for our UTL, we con-

duct experiments with a backbone of ViT-B/16 on vari-

ous benchmarks. The open performance with different

score functions is presented in Tab. S13; the MLS score

achieves better performance on average. Particularly, the

MLS score is more suitable for large-scale benchmarks,

while the MSP score shows better performance on small

benchmarks. Therefore, we adapt the MSP score on the

standard FSOR benchmark and the MLS score on the chal-

lenging benchmark. To classify the unknown sample, as

illustrated in Eq. (4), the MLS score measures the similar-

ity between the text feature[V ,Ck] and the image feature

x, where V is the learned open context, which directly im-

pacts the MLS score. The open context is learned based

on unknown words. Therefore, the learned unknown words

and the learned open contexts will help classify ‘unknown’

samples. The MSP score in Eq. (2) is defined as the max-

imum softmax probability of known classes, whereas the

softmax probability is defined in Eq. (4), where it contains

the unknown words U and their open context V in the de-

nominator.

Comparison with methods under meta-learning setting
for FSOR. We compare two FSOR methods (i.e., SEMAN-

G [11] and GEL [42], OSLO [3]) on MiniImageNet by

following their settings. As shown in Tab. S14, our UTL

outperforms them by a large margin, owing to strong pre-

trained models and the technical superiority of our UTL.


