
A. Supplementary Materials for PALM

A.1. Related Work

Active learning (AL) has been widely explored as a means
to reduce annotation costs by querying the most informa-
tive samples. AL strategies are commonly categorized by
their core selection criteria, including uncertainty, diver-
sity, representation, and hybrid approaches. Uncertainty-
based methods prioritize samples where the model exhibits
the lowest confidence. A classical approach is uncertainty
sampling [21], which selects data points with low predicted
class confidence. Margin sampling [30] targets instances
where the difference between the top two predicted class
probabilities is small, indicating ambiguity. Entropy-based
sampling [32] captures total predictive uncertainty by se-
lecting samples with high entropy in the output distribution.

Diversity-based methods seek to avoid redundancy by
selecting a set of samples that spans the data distribution.
These techniques often rely on geometric or statistical dis-
tance metrics. For example, the k-Center Greedy algorithm
[31] minimizes the maximum distance between selected
points and the remaining pool. BADGE [2] combines un-
certainty and diversity by clustering in gradient space us-
ing a k-means++ scheme. Diversity plays a crucial role in
early-stage selection to ensure broader coverage of the in-
put space. Moreover, representation-based methods utilize
structure in the feature space to guide sampling. These of-
ten rely on clustering or geometric criteria to identify rep-
resentative or central points. Examples include k-means-
based sampling [37], medoid selection [1], and median-
based heuristics [34]. TypiClust [14] extends this idea by
combining sample typicality and cluster centrality, favoring
samples that are both generalizable and diverse.

Hybrid methods integrate multiple selection criteria, of-
ten combining uncertainty with diversity. DBAL [10] lever-
ages Bayesian dropout to estimate uncertainty, while pro-
moting diversity among queried samples. These methods
are particularly valuable in deep neural networks, where re-
lying solely on uncertainty can lead to redundant or mis-
leading selections. To facilitate the empirical comparison
of AL strategies, LabelBench [40] was proposed as a mod-
ular and extensible benchmarking suite. It enables evalua-
tion of AL, semi-supervised learning, and transfer learning
under consistent conditions, including different model ar-
chitectures and labeling budgets. LabelBench places strong
emphasis on reproducibility and explores the synergy be-
tween AL and pretrained models, particularly vision trans-
formers. Its findings suggest that combining AL with SSL
can yield notable improvements in label efficiency.

While LabelBench provides a valuable empirical bench-
marking framework, our work contributes a complemen-
tary modeling perspective. PALM introduces a predictive
and interpretable parametric model for characterizing AL

behavior. By estimating three key descriptors, i.e., initial
performance, growth rate, and asymptotic accuracy, PALM
enables quantitative comparison of AL methods and fore-
casting of future performance based on partial observations.
Although both approaches evaluate common AL strate-
gies, LabelBench emphasizes empirical performance across
tasks and architectures, while PALM focuses on modeling
and interpretability of AL dynamics.

A.2. PALM Proofs and Corollary
In this section, we provide the proofs and a corollary corre-
sponding to the methods described in the main text.

A.2.1. Definition 1: Coverage Probability
Proof. By the complement rule in probability theory, the
probability of an event occurring is equal to one minus the
probability of its complement. Let A represent the event
that a point x is covered by at least one object, and let Ac

represent the complement event, where x is not covered by
any object. According to the complement rule, we have:

P (A) + P (Ac) = 1. (17)

Substituting P (A) = PC and P (Ac) = PNC, the equation
becomes:

PC + PNC = 1, (18)

which completes the proof.

A.2.2. Definition 2: Coverage Probability with s Inde-
pendent Objects

Proof. Let p represent the probability that a single randomly
placed object covers point x. The probability that a single
object does not cover x is 1 − p. Now, consider s objects
placed independently in the space X. Since the objects are
independent, the probability that none of them covers x is
the product of their individual non-coverage probabilities:

PUC = (1− p)s. (19)

Thus, the probability that x is covered by at least one object
is:

PC = 1− (1− p)s. (20)

This completes the proof.

A.2.3. Corollary 2: Asymptotic Behavior of Accuracy as
a Function of Coverage Probability

The test generalization accuracy function is given by:

A = AC

(
1− (1− δ)B

)
+ AUC (1− δ)B . (21)

This function exhibits the following asymptotic behaviors:
Case 1. No Labeled Samples (B = 0): When no labeled

samples are available, the coverage fraction is:

PC = 1− (1− δ)0 = 0. (22)



Substituting this into the accuracy function gives A = AUC,
indicating that without labeled data, the model’s accuracy
depends on its performance in the uncovered regions.

Case 2. Infinite Labeled Samples (B → ∞): As the
number of labeled samples increases, the coverage proba-
bility approaches one:

lim
B→∞

(1− δ)B = 0. (23)

Substituting this into the accuracy function yields:

lim
B→∞

A = AC, (24)

which implies that with full coverage, the model achieves
its maximum accuracy in the covered regions.

Case 3. Small δ Approximation for Large B: For small
values of δ, the coverage term (1−δ)B can be approximated
using the first-order Taylor expansion:

(1− δ)B ≈ e−Bδ, (25)

since limx→0+(1 − x) ≈ e−x. Thus, for sufficiently large
B, the accuracy function approximates:

A ≈ AC
(
1− e−Bδ

)
+ AUC e−Bδ, (26)

which shows that the accuracy converges exponentially to-
wards AC, with the rate of convergence governed by δ.

A.2.4. Definition 6: Generalized Accuracy as a Function
of Coverage with Exponential Adjustment

Proof. We aim to derive the generalized accuracy function,
which incorporates the parameters α and β. The function is
defined as:

A = Amax

(
1− (1− δ)(B+α)β

)
, (27)

where Amax is the maximum achievable accuracy under
full coverage, B is the cumulative number of labeled sam-
ples, δ represents the expected fraction of the space covered
by a single labeled sample, α accounts for initial learning
effects and prior knowledge, allowing non-zero accuracy
when B = 0, and β controls the scaling of accuracy growth
as B increases.

We start with the test accuracy function given by:

A = AC
(
1− (1− δ)B

)
+ AUC (1− δ)B . (28)

Rearranging the terms:

A = AC − (AC − AUC)(1− δ)B . (29)

Assuming that Amax = AC, we rewrite the expression as:

A = Amax − (Amax − AUC)(1− δ)B . (30)

As B increases, the second term vanishes, since (1−δ)B →
0, which ensures that A → Amax, as expected under full
coverage. To generalize this formulation and account for
variations in early learning dynamics and growth rates, we
replace B with the adjusted term (B + α)β , where α > 0
allows the model to exhibit non-zero accuracy even when
B = 0, representing prior knowledge or inherent general-
ization, and β > 0 modulates the rate of accuracy increase
with B. Substituting this adjustment, the generalized accu-
racy function becomes:

A = Amax − (Amax − AUC)(1− δ)(B+α)β . (31)

Finally, assuming that the uncovered regions contribute
negligible accuracy (AUC ≈ 0), the expression simplifies
to:

A = Amax

(
1− (1− δ)(B+α)β

)
. (32)

Thus, the generalized accuracy function models the influ-
ence of labeled sample coverage, prior knowledge, and
learning dynamics on active learning performance.

A.2.5. Corollary 3: Asymptotic Behavior of Generalized
Accuracy with Exponential Adjustment

The generalized test accuracy function exhibits the follow-
ing asymptotic behavior:

Case 1. No Labeled Samples (B = 0): When no labeled
samples are available, the accuracy simplifies to:

A = Amax

(
1− (1− δ)α

β
)
, (33)

which leads to two characteristic scenarios:
• If α > 0, then A > 0, indicating that the model achieves

non-zero accuracy even without labeled data. This re-
flects the model’s ability to generalize from uncovered
regions or prior knowledge.

• If α = 0, we recover the classical case where no coverage
implies zero accuracy, i.e., A = 0.
Case 2. Infinite Labeled Samples (B → ∞): As the

number of labeled samples grows to infinity:

lim
B→∞

(B + α)β = ∞. (34)

Since 0 < 1− δ < 1, we have:

lim
B→∞

(1− δ)(B+α)β = 0. (35)

Therefore, the accuracy converges to its theoretical maxi-
mum:

lim
B→∞

A = Amax. (36)

This confirms that, with full coverage, the model achieves
optimal performance.



Case 3. Small δ Approximation for Large B: For small
δ, the coverage term can be approximated using the first-
order Taylor expansion:

(1− δ)(B+α)β ≈ e−(B+α)βδ. (37)

Thus, for sufficiently large B, the accuracy function approx-
imates:

A ≈ Amax

(
1− e−(B+α)βδ

)
, (38)

which shows that the accuracy converges exponentially to-
ward Amax, with a rate of convergence determined by α, β,
and δ.

A.2.6. Lemma 1: Parameter Estimation for Learning
Dynamics in Active Learning Without Normal-
ization

Let B denote the total number of labeled samples collected
during an active learning (AL) process. Given the observed
accuracy values from the AL process, we aim to estimate
the parameters Amax, δ, α, and β in the model:

A = Amax

(
1− (1− δ)(B+α)β

)
. (39)

These parameters can be empirically estimated from accu-
racy measurements collected over multiple AL iterations
without the need to normalize B.

Suppose accuracy is observed for at least four different
cumulative budgets B1, B2, B3, B4, with corresponding ac-
curacies A1, A2, A3, and A4. The parameters Amax, δ, α,
and β can then be estimated by solving the following system
of equations using nonlinear regression techniques:

Ai = Amax

(
1− (1− δ)(Bi+α)β

)
, i = 1, 2, 3, 4. (40)

The complexity of estimating the parameters primar-
ily depends on evaluating the exponentiation term (1 −
δ)(B+α)β . Using optimized exponentiation algorithms, the
complexity is approximately O(log(B)). However, in naive
implementations, the complexity can approach O(Bβ), es-
pecially for large B. For large values of B, the following
challenges arise:
• Computational Overhead: The term (B + α)β grows

rapidly, increasing computation time.
• Numerical Instability: Large exponents may lead to

floating-point precision errors.
• Diminishing Accuracy Gains: As B increases, the

marginal contribution of additional labeled samples de-
creases due to saturation effects.

To mitigate these issues, normalizing B by the mean bud-
get per iteration (b) reduces the computational cost from
O(Bβ) to O((B/b)β), improves numerical stability during
exponentiation, and ensures smoother convergence behav-
ior of the accuracy function. The normalized generalized

accuracy function is then given by:

A = Amax

(
1− (1− δ)(

B
b +α)

β)
, (41)

where normalization aligns the function with the number
of AL iterations rather than the absolute number of labeled
samples.

A.2.7. Theorem 1: Comparing Two Active Learning
Methods Using the Normalized Accuracy Func-
tion

Proof. Consider two active learning methods 1 and 2, with
normalized accuracy functions defined as:

A1 = Amax,1

(
1− (1− δ1)

(
B
b1

+α1

)β1
)
, (42)

A2 = Amax,2

(
1− (1− δ2)

(
B
b2

+α2

)β2
)
. (43)

To compare their performance for a given budget B, we de-
fine the ratio of accuracies. Method 1 outperforms Method
2 at budget B if A1/A2 > 1.

Full Coverage Limit (B → ∞). As the number of la-
beled samples approaches infinity:

lim
B→∞

A1 = Amax,1, lim
B→∞

A2 = Amax,2. (44)

Thus, in the limit of infinite budget, the method with the
higher Amax dominates:

Amax,1 > Amax,2 ⇒ lim
B→∞

A1

A2
> 1. (45)

Early-Stage Learning (small B). For small budget B,
applying the first-order Taylor approximation results in:

(1− δ)x ≈ e−xδ. (46)

Therefore, we can approximate the accuracy functions as:

A1 ≈ Amax,1

(
1− e

−δ1
(

B
b1

+α1

)β1
)
, (47)

A2 ≈ Amax,2

(
1− e

−δ2
(

B
b2

+α2

)β2
)
. (48)

In this regime, faster accuracy growth occurs for the method
with larger δ, higher α, smaller b, and larger β.

General Comparison Criterion. To compare the accu-
racy growth rates, differentiate the accuracy functions with
respect to B. Method 1 improves faster than Method 2 if:

dA1

dB
>

dA2

dB
. (49)

This condition holds when:

δ1

(
1

b1
+

α1

B

)β1

> δ2

(
1

b2
+

α2

B

)β2

. (50)



In summary, Method 1 outperforms Method 2 when it
exhibits higher coverage efficiency (δ), smaller batch size
(b), greater initial accuracy boost (α), or faster accuracy
scaling (β). Additionally, the asymptotic accuracy Amax

determines long-term dominance as B increases. Together,
these parameters provide a comprehensive framework for
quantitatively comparing active learning strategies across
different budget regimes.

A.3. Quantitative Results



Table 1. PALM parameter estimates for CIFAR-10 without pretrained embeddings, evaluated across various AL strategies and different
numbers of labeled points used for curve fitting based on the mean values from 5 repetitions. The table reports the maximum achievable
accuracy (Amax), coverage efficiency (δ), early-stage performance offset (α), and scalability (β). In the absence of pretrained embeddings,
methods show slower learning dynamics and lower δ values, with α increasing over time, indicating delayed accuracy gains. TypiClust
demonstrates relatively higher δ values throughout, reflecting strong sample efficiency. In contrast, methods like Margin and Entropy show
increasing α and β, indicating slower convergence in later stages.

AL Method 6 Points 10 Points 20 Points 50 Points 100 Points 500 Points 1000 Points

Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β

Random 32.6 0.373 2.519 0.688 100 0.168 1.611 0.303 100 0.144 2.466 0.365 100 0.139 2.745 0.376 100 0.124 3.696 0.409 93.8 0.116 4.951 0.446 90.7 0.108 6.263 0.475
Uncertainty 100 0.105 1.714 0.467 36.3 0.138 3.365 0.932 49.0 0.147 2.716 0.701 65.2 0.161 1.624 0.510 91.5 0.135 1.092 0.416 99.6 0.102 2.614 0.456 93.7 0.090 4.644 0.506
Margin 39.1 0.457 1.289 0.390 100 0.167 1.672 0.316 100 0.150 2.227 0.360 100 0.142 2.626 0.377 100 0.127 3.587 0.409 93.6 0.097 7.353 0.497 92.6 0.094 7.812 0.507
Entropy 56.7 0.317 0.355 0.282 100 0.176 0.397 0.264 100 0.165 0.611 0.304 100 0.152 0.935 0.333 100 0.126 2.204 0.389 99.4 0.083 7.303 0.490 93.3 0.070 10.00 0.546
TypiClust 35.4 0.489 1.274 0.617 42.3 0.474 0.858 0.412 52.3 0.410 0.618 0.308 100 0.180 1.726 0.307 100 0.165 2.451 0.333 - - - - - - - -

Table 2. PALM parameter estimates for CIFAR-10 without pretrained embeddings, evaluated across various AL strategies and different
numbers of labeled points used for curve fitting based on the minimum values from 5 repetitions. The table reports the maximum achievable
accuracy (Amax), coverage efficiency (δ), early-stage performance offset (α), and scalability (β). In the absence of pretrained embeddings,
methods show slower learning dynamics and lower δ values, with α increasing over time, indicating delayed accuracy gains. TypiClust
demonstrates relatively higher δ values throughout, reflecting strong sample efficiency. In contrast, methods like Margin and Entropy show
increasing α and β, indicating slower convergence in later stages.

AL Method 6 Points 10 Points 20 Points 50 Points 100 Points 500 Points 1000 Points

Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β

Random 100 0.144 2.369 0.319 100 0.085 4.819 0.534 100 0.093 4.654 0.493 87.1 0.143 2.824 0.407 100 0.114 3.635 0.418 93.4 0.107 4.930 0.458 90.0 0.098 6.350 0.490
Uncertainty 73.7 0.000 38.91 4.559 57.9 0.000 56.46 4.146 50.7 0.148 1.790 0.658 57.7 0.154 1.355 0.571 81.6 0.138 0.732 0.442 100 0.095 2.140 0.462 93.7 0.083 4.104 0.512
Margin 70.8 0.000 39.14 4.522 100 0.188 0.446 0.246 100 0.164 0.955 0.319 100 0.142 1.733 0.369 100 0.125 2.669 0.406 97.3 0.104 4.834 0.460 92.8 0.093 6.879 0.502
Entropy 72.5 0.000 40.98 4.510 55.6 0.000 53.58 4.138 100 0.146 0.380 0.327 100 0.136 0.599 0.356 100 0.122 1.093 0.389 100 0.077 6.406 0.495 93.2 0.063 10.31 0.559
TypiClust 63.5 0.000 35.52 4.594 100 0.197 0.508 0.262 100 0.203 0.409 0.242 48.2 0.343 1.120 0.425 49.9 0.353 0.878 0.386 - - - - - - - -

Table 3. PALM parameter estimates for CIFAR-10 without pretrained embeddings, evaluated across various AL strategies and different
numbers of labeled points used for curve fitting based on the maximum values from 5 repetitions. The table reports the maximum achievable
accuracy (Amax), coverage efficiency (δ), early-stage performance offset (α), and scalability (β). In the absence of pretrained embeddings,
methods show slower learning dynamics and lower δ values, with α increasing over time, indicating delayed accuracy gains. TypiClust
demonstrates relatively higher δ values throughout, reflecting strong sample efficiency. In contrast, methods like Margin and Entropy show
increasing α and β, indicating slower convergence in later stages.

AL Method 6 Points 10 Points 20 Points 50 Points 100 Points 500 Points 1000 Points

Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β

Random 29.6 0.001 16.87 5.348 34.8 0.423 2.032 0.639 100 0.180 1.608 0.301 100 0.145 3.133 0.372 100 0.126 4.355 0.412 100 0.126 4.355 0.412 91.6 0.120 5.799 0.454
Uncertainty 100 0.008 11.58 1.265 33.1 0.000 28.16 4.467 40.4 0.022 9.550 1.423 71.9 0.150 2.545 0.495 99.5 0.123 2.053 0.420 94.8 0.101 4.184 0.486 93.8 0.098 4.613 0.496
Margin 100 0.092 6.633 0.520 100 0.000 44.99 2.612 41.2 0.007 16.22 1.686 100 0.139 3.940 0.389 100 0.123 5.139 0.421 91.1 0.088 10.16 0.534 92.6 0.097 8.479 0.506
Entropy 47.9 0.000 81.58 3.796 100 0.155 1.531 0.346 100 0.159 1.406 0.336 80.2 0.200 1.328 0.348 100 0.133 2.932 0.384 91.8 0.067 12.81 0.569 92.7 0.072 11.69 0.553
TypiClust 33.8 0.222 2.706 1.290 36.2 0.456 1.481 0.749 48.3 0.481 0.550 0.324 100 0.165 3.205 0.345 100 0.142 4.792 0.388 - - - - - - - -

Table 4. PALM parameter estimates for CIFAR-10 using SimCLR embeddings for feature extraction, evaluated across various AL strategies
and different numbers of labeled points used for curve fitting based on the mean values from 5 repetitions. The table reports the maximum
achievable accuracy (Amax), coverage efficiency (δ), early-stage performance offset (α), and scalability (β). The results highlight the
acceleration of learning dynamics with pretrained embeddings, where TypiClust and Margin benefit from high δ and low α, indicating
efficient early-stage learning. Conversely, methods like Entropy and DBAL exhibit delayed improvements at small budgets but show
recovery and better performance as the annotation grows.

AL Method 6 Points 10 Points 20 Points 50 Points 100 Points 500 Points 1000 Points

Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β

Random 100 0.443 0.536 0.341 100 0.451 0.473 0.317 100 0.394 0.912 0.413 84.2 0.290 2.314 0.735 85.0 0.355 1.690 0.633 86.6 0.496 0.609 0.434 87.1 0.536 0.392 0.381
Uncertainty 100 0.278 0.123 0.147 74.1 0.000 26.35 4.534 75.2 0.000 22.50 4.536 79.8 0.005 8.341 1.940 82.7 0.061 3.390 1.142 86.6 0.220 0.708 0.640 87.6 0.270 0.397 0.546
Margin 68.1 0.000 12.57 5.699 80.1 0.250 1.853 0.966 82.5 0.286 1.596 0.857 84.3 0.357 1.133 0.705 85.5 0.409 0.819 0.605 87.5 0.511 0.326 0.428 87.9 0.535 0.241 0.389
Entropy 34.8 0.000 13.34 5.462 39.1 0.299 1.822 0.856 81.6 0.000 31.60 4.337 76.6 0.000 31.40 4.427 80.2 0.008 8.037 1.643 86.2 0.183 0.581 0.632 87.5 0.227 0.305 0.542
TypiClust 78.1 0.859 0.536 0.347 88.2 0.788 0.188 0.147 96.7 0.721 0.153 0.116 85.5 0.803 0.298 0.188 85.3 0.803 0.312 0.192 - - - - - - - -
DBAL 33.3 0.000 12.11 5.595 100 0.185 0.862 0.369 79.6 0.000 30.30 4.377 76.1 0.000 29.55 4.413 80.0 0.014 6.508 1.505 86.3 0.197 0.488 0.608 87.5 0.236 0.274 0.528



Table 5. PALM parameter estimates for CIFAR-10 using SimCLR embeddings for feature extraction, evaluated across various AL strate-
gies and different numbers of labeled points used for curve fitting based on the minimum values from 5 repetitions. The table reports
the maximum achievable accuracy (Amax), coverage efficiency (δ), early-stage performance offset (α), and scalability (β). The results
highlight the acceleration of learning dynamics with pretrained embeddings, where TypiClust and Margin benefit from high δ and low α,
indicating efficient early-stage learning. Conversely, methods like Entropy and DBAL exhibit delayed improvements at small budgets but
show recovery and better performance as the annotation grows.

AL Method 6 Points 10 Points 20 Points 50 Points 100 Points 500 Points 1000 Points

Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β

Random 60.4 0.000 12.60 5.593 66.7 0.510 0.808 0.588 100 0.258 1.699 0.562 83.5 0.117 4.241 1.009 84.6 0.211 2.595 0.789 86.2 0.357 1.004 0.551 86.8 0.411 0.615 0.476
Uncertainty 57.3 0.000 66.30 3.987 70.1 0.000 19.46 4.726 71.4 0.000 17.86 4.808 77.9 0.010 5.007 1.777 82.0 0.075 1.750 1.069 86.4 0.190 0.379 0.665 87.4 0.226 0.237 0.584
Margin 62.4 0.267 0.894 1.361 94.7 0.362 0.115 0.462 100 0.333 0.137 0.479 85.4 0.348 0.276 0.618 85.5 0.350 0.266 0.612 87.3 0.398 0.119 0.508 87.7 0.416 0.087 0.475
Entropy 72.0 0.000 41.39 4.450 57.4 0.000 57.33 4.091 69.0 0.000 21.11 4.556 73.4 0.000 20.41 3.828 78.6 0.016 3.898 1.433 86.0 0.134 0.188 0.690 87.3 0.161 0.105 0.614
TypiClust 72.7 0.201 4.324 1.445 100 0.647 0.529 0.140 82.3 0.734 1.142 0.291 82.8 0.752 0.892 0.256 84.3 0.760 0.643 0.212 - - - - - - - -
DBAL 61.5 0.000 61.75 4.078 55.4 0.000 51.67 4.223 70.4 0.000 23.07 4.499 71.9 0.000 25.99 4.604 78.5 0.037 2.457 1.183 86.2 0.149 0.162 0.647 87.4 0.172 0.101 0.588

Table 6. PALM parameter estimates for CIFAR-10 using SimCLR embeddings for feature extraction, evaluated across various AL strate-
gies and different numbers of labeled points used for curve fitting based on the maximum values from 5 repetitions. The table reports
the maximum achievable accuracy (Amax), coverage efficiency (δ), early-stage performance offset (α), and scalability (β). The results
highlight the acceleration of learning dynamics with pretrained embeddings, where TypiClust and Margin benefit from high δ and low α,
indicating efficient early-stage learning. Conversely, methods like Entropy and DBAL exhibit delayed improvements at small budgets but
show recovery and better performance as the annotation grows.

AL Method 6 Points 10 Points 20 Points 50 Points 100 Points 500 Points 1000 Points

Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β

Random 100 0.509 0.559 0.321 100 0.518 0.494 0.306 96.5 0.531 0.535 0.327 84.9 0.480 1.317 0.556 85.3 0.511 1.096 0.511 86.9 0.626 0.362 0.342 87.3 0.652 0.238 0.303
Uncertainty 39.5 0.000 6.601 5.378 85.5 0.000 36.72 4.202 80.0 0.000 29.09 4.311 81.3 0.000 23.79 3.425 83.1 0.009 9.458 1.690 86.7 0.246 1.170 0.625 87.7 0.322 0.564 0.503
Margin 100 0.026 5.817 1.720 79.0 0.000 14.39 4.978 81.4 0.117 3.350 1.421 84.3 0.461 1.076 0.665 85.7 0.546 0.641 0.508 87.7 0.634 0.232 0.338 88.1 0.652 0.172 0.308
Entropy 45.9 0.000 14.25 5.363 43.3 0.000 12.78 5.494 88.4 0.000 38.05 4.203 78.6 0.000 32.07 4.160 80.9 0.000 19.07 2.554 86.4 0.268 0.739 0.541 87.7 0.320 0.404 0.456
TypiClust 78.3 0.000 10.77 6.109 78.3 0.000 10.73 6.118 100 0.741 0.017 0.078 93.5 0.793 0.023 0.092 88.2 0.836 0.048 0.124 - - - - - - - -
DBAL 46.5 0.000 15.57 5.270 41.8 0.000 12.80 5.467 87.1 0.000 36.19 4.217 78.5 0.000 31.29 4.163 81.1 0.000 20.40 2.700 86.3 0.243 0.901 0.576 87.5 0.304 0.454 0.474

Table 7. PALM parameter estimates for CIFAR-100 across different AL methods and varying numbers of labeled points used for estimation.
The table reports the maximum achievable accuracy (Amax), coverage efficiency (δ), early-stage performance offset (α), and scalability
(β). Higher values of δ and lower values of α indicate more efficient early-stage learning, while β reflects the scalability of the method as
the number of labeled points increases.

AL Method 6 Points 10 Points 20 Points 50 Points 100 Points 448 Points

Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β

Random 59.0 0.000 80.98 3.804 52.3 0.000 68.27 3.935 55.5 0.000 85.53 3.707 36.4 0.081 1.376 0.675 79.4 0.050 0.720 0.518 79.8 0.048 0.955 0.526
Uncertainty 55.6 0.000 86.03 3.771 43.7 0.000 85.64 3.781 46.1 0.000 85.11 3.715 93.8 0.035 0.410 0.531 100 0.030 0.626 0.551 69.9 0.029 3.469 0.656
Margin 44.8 0.000 85.36 3.772 56.6 0.000 85.26 3.748 46.6 0.000 86.15 3.728 25.8 0.000 73.40 3.936 100 0.042 1.044 0.482 58.0 0.025 10.64 0.751
Entropy 56.1 0.000 84.65 3.783 40.2 0.000 97.83 3.668 56.1 0.000 83.88 3.746 23.2 0.000 70.11 4.037 100 0.025 0.772 0.568 61.3 0.018 7.519 0.777
TypiClust 52.0 0.000 90.99 3.712 68.1 0.000 67.31 3.953 54.5 0.000 86.69 3.737 - - - - - - - - - - - -
DBAL 51.3 0.000 88.04 3.764 52.6 0.000 88.59 3.740 54.7 0.000 84.73 3.736 23.3 0.000 54.62 4.185 47.5 0.031 1.284 0.774 100 0.024 0.452 0.595

Table 8. PALM parameter estimates for CIFAR-100 using SimCLR embeddings, evaluated across different AL strategies and varying
numbers of labeled points used for estimation. The table reports the maximum achievable accuracy (Amax), coverage efficiency (δ), early-
stage performance offset (α), and scalability (β). Higher δ values and lower α indicate more efficient early-stage learning, while β captures
the rate of accuracy growth as the number of labeled points increases.

AL Method 6 Points 10 Points 20 Points 50 Points 100 Points 448 Points

Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β

Random 41.7 0.201 0.718 1.133 47.7 0.205 0.570 0.975 49.9 0.218 0.458 0.887 53.9 0.256 0.227 0.709 55.7 0.278 0.138 0.626 57.6 0.318 0.057 0.516
Uncertainty 51.0 0.000 88.128 3.777 57.3 0.000 83.024 3.805 38.4 0.037 0.615 1.347 46.6 0.059 0.000 1.033 51.3 0.073 0.000 0.881 58.2 0.116 0.001 0.634
Margin 56.0 0.000 65.254 4.041 39.9 0.032 2.265 1.822 46.9 0.104 0.969 1.157 52.6 0.163 0.366 0.840 55.3 0.195 0.175 0.707 58.0 0.237 0.068 0.573
Entropy 59.6 0.000 73.883 3.920 60.1 0.000 77.654 3.865 48.1 0.000 87.174 3.733 42.4 0.030 0.000 1.227 47.3 0.047 0.000 0.991 58.6 0.089 0.001 0.651
TypiClust 45.9 0.433 1.128 0.737 48.3 0.451 0.948 0.633 48.8 0.464 0.860 0.597 - - - - - - - - - - - -
DBAL 59.6 0.000 73.29 3.937 60.0 0.000 77.83 3.864 47.4 0.000 87.58 3.726 42.0 0.030 0.000 1.246 47.3 0.048 0.000 0.989 58.6 0.091 0.001 0.646



Table 9. PALM parameter estimates on ImageNet-50 across different AL strategies and self-supervised embeddings. The table reports the
maximum achievable accuracy (Amax), coverage efficiency (δ), early-stage performance offset (α), and scalability (β) for each method,
capturing the efficiency and dynamics of learning across varying annotation budgets.

Embedding Random Entropy Uncertainty DBAL Margin TypiClust

Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β

MoCov2+ 27.5 0.005 4.64 1.86 47.6 0.006 2.27 2.36 1.95 1.000 0.00 -1.00 66.3 0.080 13.25 -0.17 27.1 0.000 17.77 4.49 28.4 0.000 17.63 4.91
MoCov3 87.0 0.397 0.00 0.78 84.5 0.155 0.00 1.20 85.4 0.154 0.41 1.22 84.6 0.103 0.61 1.39 88.2 0.444 0.00 0.78 87.0 0.714 0.00 0.55
BYOL 8.48 0.314 0.00 0.67 42.0 0.071 0.00 0.30 12.0 0.170 0.00 0.61 23.1 0.129 0.00 0.31 8.08 0.250 0.43 0.81 2.96 0.130 6.56 1.05
SimCLR 66.5 0.131 0.22 0.98 45.9 0.001 3.81 2.39 50.0 0.009 1.11 1.96 46.9 0.001 4.42 2.71 62.7 0.138 0.00 1.15 59.5 0.363 1.13 0.67

Table 10. PALM parameter estimates on ImageNet-100 across different AL strategies and self-supervised embeddings. The table reports
the maximum achievable accuracy (Amax), coverage efficiency (δ), early-stage performance offset (α), and scalability (β) for each method,
providing insights into learning efficiency and model behavior across varying annotation budgets.

Embedding Random Entropy Uncertainty DBAL Margin TypiClust

Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β

MoCov2+ 21.2 0.001 6.51 2.26 1.85 0.306 0.00 6.75 100 0.002 20.0 0.39 2.49 0.328 0.00 2.07 21.4 0.055 0.00 1.26 27.60 0.001 20.0 2.26
MoCov3 81.6 0.333 0.00 0.87 76.7 0.082 0.00 1.47 76.6 0.112 0.00 1.37 76.4 0.083 0.00 1.48 81.1 0.316 0.00 1.00 80.7 0.690 0.00 0.56
BYOL 8.17 0.188 0.00 0.47 8.52 0.125 0.34 0.60 22.7 0.070 0.00 0.36 8.64 0.090 1.71 0.72 4.44 0.302 0.00 0.72 2.46 0.000 20.0 4.41
SimCLR 44.0 0.226 0.00 0.73 27.7 0.087 0.00 1.08 36.2 0.105 0.00 0.86 27.3 0.089 0.00 1.09 44.0 0.171 0.30 0.80 36.9 0.090 3.36 1.20

Table 11. PALM parameter estimates on ImageNet-200 across different AL strategies and self-supervised embeddings. The table reports
the maximum achievable accuracy (Amax), coverage efficiency (δ), early-stage performance offset (α), and scalability (β) for each method,
highlighting differences in learning dynamics and sample efficiency across strategies.

Embedding Random Entropy Uncertainty DBAL Margin TypiClust

Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β Amax δ α β

MoCov2+ 18.9 0.001 4.65 2.33 1.12 0.411 0.00 1.05 3.90 0.000 18.9 4.63 1.40 0.000 5.44 5.17 32.0 0.020 1.41 1.62 13.1 0.060 3.57 1.85
MoCov3 76.9 0.330 0.00 0.80 47.4 0.092 0.00 1.38 70.3 0.129 0.00 1.28 69.2 0.087 0.00 1.43 76.0 0.348 0.00 0.83 70.4 0.694 0.00 0.57
BYOL 27.0 0.034 0.01 0.40 14.1 0.068 0.00 0.39 3.29 0.206 0.00 0.71 7.20 0.136 0.00 0.42 7.98 0.095 0.00 0.50 28.5 0.000 20.8 4.08
SimCLR 36.6 0.027 1.59 1.48 19.8 0.005 1.56 1.85 30.1 0.011 0.70 1.54 18.3 0.002 2.76 2.18 37.9 0.057 0.36 1.26 42.0 0.378 0.00 0.41
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