On the Recovery of Cameras from Fundamental Matrices

Supplementary Material

In this document we provide additional information that
was not included in the main paper due to space constraints.

A. Convergence Analysis

We now provide some considerations about convergence
properties of our approach. Let us first recall our global
minimization loss from Eq. (5) and (6):
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As explained in Sec. 3, we handle this challenging prob-

lem by alternating minimizations restricted over entries of

individual cameras pj, a technique known in literature as

Block Relaxation. There are several theoretical studies on

convergence properties of this scheme. Among them, here

we follow [11] since it provides general results that require

mild assumptions. Specifically, [11] relies on the existence

assumption, i.e., that the global objective restricted over the

current block of variables has a global minimizer over its
feasible domain (although it does not need to be unique).
In our case, this translates into the fact that the cost re-

stricted over a single camera (i.e., ¥(p1, .., Pi, .-, Pn)) has a

global minimizer. For the least squares null-space problem

in Sec. 3.1 (LS-SVD), actually there exists a minimizer from
the SVD decomposition of the matrix obtained by stacking
the A; matrices for each neighbor, but this is not unique'".

Consequently, using the same reasoning as [11], we can

conclude the following properties:

1. The local sub-problem — Eq. (8) — is solved optimally
(via SVD) with respect to the current camera p;, hence
the global objective ¥ is non-increasing. In other terms,
if we denote the sequence of objective values over the
iterations by U(¥) with & = 1,2,..., then we have
Uk < wk=1) Since U is bounded by 0, then the se-
quence of objective values is convergent (to some V),
by the Monotone Convergence Theorem.

2. Concerning the sequence of variables, denoted by

{p1,...,pn}™ , note that the set of feasible cameras
is bounded (due to the unit norm constraint), hence the
Bolzano-Weierstrass Theorem guarantees the existence
of a convergent sub-sequence: {p1,...,Pn}.

3. If we have a sub-sequence converging to some
{P1,.-.,Pn}, then the corresponding sequence of ob-
jective values converges to U({p; ...pn}>) since ¥
is continuous. But all sub-sequences of a convergent

11f a vector p; is the minimizer, then -p;* will also be a minimizer.

sequence converge to the same point, hence we have

W({p1 ... pa}*) = U,
To summarize, thanks to the above analysis, we have con-
vergence of the objective values, but about the sequence of
variables (cameras) we only know that it has one or more
accumulation points, and that all accumulation points have
the same function value. However, we cannot conclude that
{p1...pn} is a local/global minimum. The lack of lo-
cal/global convergence results also involves other problems
in Computer Vision based on a block relaxation framework
(e.g., [12, 18]). However, this is an interesting area that we
wish to explore in future work.

B. Initialization Approach

We now provide further details on the initialization of our
approach (Step 1 of the iterative scheme in Sec. 3). We
attempted different ideas: initializing all cameras to the
Canonical Camera, to random 3 x 4 matrices, and to the out-
put of other camera recovery methods (such as GPSFM [15],
SINHA [28] and COLOMBO [9]). Among the variants of
our approach, we select ANGLE-IT. We consider the same
synthetic scenario as described in Sec. 4.2 and we ana-
lyze the effect of increasing noise on the different ini-
tialization methods, setting constant the other parameters:
n = 25,p = 0.4, = 0.1. In this experiment, the view-
ing graph is covered by triplets. The result of this test is
shown in Fig. 6 (Left): initializing all nodes with Canonical
cameras, or random 3 X 4 matrices results in very large er-
rors, showing that our approach necessitates initialization
from other methods in practice. While initializing with
SINHA and COLOMBO results in relatively lower errors than
canonical/random cameras, their sensitivity to outliers make
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Figure 6. Left: error [degrees] in camera recovery achieved by
our approach with different initialization methods, with increasing
noise o and other parameters fixed (n = 25, p = 0.4, v = 0.1).
Right: error [degrees] in camera recovery achieved by GPSFM and
by our approach with increasing fraction of “missing” node initial-
izations, for increasing noise and other parameters fixed (n = 25,
p=04,~v=0.0).



them unusable in practice (they get nonzero errors for 0
noise due to outliers, see Fig. 4). We achieve the best perfor-
mance from initialization with the output of GPSFM, which
we choose as initialization for the experiments in Sec. 4.
Note that, by initializing with the output of GPSFM, it is
possible that some cameras are not given an initial value: in-
deed, as already observed, GPSFM requires a graph covered
by triplets and it is unable to estimate nodes not appearing
in any triplet. Such nodes are initialized to the canonical
cameras, as explained in Sec. 4.1. We analyze the effect
of missing initialization for a subset of nodes in a synthetic
environment, which simulates a real scenario when there
are nodes in a viewing graph not covered by triplets. We
test the effect of increasing fraction of nodes not initial-
ized by GPSFM, with varying noise and other parameters
constant (n = 25,p = 0.4,y = 0.0). Results are plot-
ted in Fig. 6 (Right), showing that our method outperforms
GPSFM even when a significant amount of nodes are initial-
ized to the canonical cameras. Results get slightly worse,
still reasonable, when such amount comprises 60% of the
cameras. This clearly shows that, even in the absence of a
valid initialization for some nodes, our method is still effec-
tive in camera recovery, showing the potential in situations
where the viewing graph is not entirely covered by triplets.

C. Direct Optimization

In addition to the methods presented in the main paper, we
also attempt to estimate all the cameras P; ... P, by di-
rectly solving the optimization problem from (14), given an
initial estimate of the cameras. More precisely, we solve:

min Y ||4;pill3 (15)

for A; as defined in (4). We solve (15) using the
interior-point method based Matlab solver fimincon, with
pgo) e pflo) initialized, as our methods are, from the output

of GPSFM . We tested this method, referred to as Fmincon,
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Figure 7. Left: Error [degrees] in camera recovery with increasing
noise o, with other parameters fixed (n = 25, p = 0.4, v = 0).
Right: execution times [seconds] for increasing number of cam-
eras n, with other parameters fixed (¢ = 0.015 rad, p = 0.4,
~v = 0.0). The viewing graph is covered by triplets in these exper-
iments. Results for our method, GPSFM and Fmincon are reported.

in the same synthetic set up as in Fig. 3 (left), and Fig. 4
(right), for its sensitivity to noise and execution times re-
spectively, with the results shown in Fig. 7. While Fmincon
performs reasonably regarding sensitivity to noise, it is still
worse than our method (ANGLE-IT ) in terms of accuracy,
and requires significantly higher execution times. We also
tested the case where a fraction of the cameras are not ini-
tialized, but Fmincon failed to provide reasonable results,
which renders it incapable of handling general graphs.
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