
BATCLIP: Bimodal Online Test-Time Adaptation for CLIP

Supplementary Material

In this work, we study the problem of online test-time
adaptation (TTA) of CLIP [18] towards common image cor-
ruptions and propose improved schemes for increasing the
robustness of CLIP. In addition, to demonstrate the broad
impact of our proposed approach, we evaluate on common
domain generalization datasets [7]-OfficeHome [23], PACS
[12], VLCS [6], and Terra Incognita [2]. We put forward a
bimodal domain adaptation scheme, at test-time, wherein
we exploit the shared feature space of CLIP. In essence,
leaning towards a more effective multimodal learning and
adaptation method, we propose loss components that im-
prove alignment between the class-specific visual prototype
and corresponding text features via maximizing the pro-
jection. We also increase the cosine distance between the
class prototypes to enhance discrimination between visual
features. In this Supplementary, we provide additional in-
sights and experimental results, that has been organized as
follows,

1. Section 0.1 offers a detailed discussion of the standard
common corruption datasets [9] used, supplemented
with visual illustrations.

2. To ensure full transparency, we outline the implementa-
tion details of all the methods in Section 0.2, including
those for prior TTA approaches [15, 19, 24, 25] adapted
for CLIP. We also discuss details of the adapted version
of WATT [16] - WATT-P* and WATT-S* for online TTA,
and other details of experiments run on the domain gen-
eralization datasets.

3. Section 0.3 presents further results and analysis:
• In subsection 0.3.1, we explore the limitations of zero-

shot CLIP when using ViT-B/32 and ViT-L/14 back-
bones under increasing image corruption severity.

• In Subsection 0.3.2, we report the main online TTA
results on CIFAR-10C, CIFAR-100C, and ImageNet-
C with a ViT-B/32 backbone.

• We study the effect of different prompt templates on
BATCLIP in Subsection 0.3.4. Subsection 0.3.5 dis-
cusses the ablation of Lpm which is responsible for
updating the text encoder.

• In subsections 0.3.3 and 0.3.8, we present a de-
tailed loss ablation study and the post-adaptation zero-
shot generalization on source test sets, respectively
— essentially evaluating catastrophic forgetting of
BATCLIP.

• Lastly, we include task-wise t-SNE visualizations in
subsection 0.3.9 for CIFAR-10C and CIFAR-100C,
comparing our method against zero-shot CLIP (ViT-
B/16), to illustrate the effectiveness of BATCLIP.
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Figure 1. We provide visualizations of an image from ImageNet-C
[9] for different corruption types, at an image severity level of 5.

0.1. Datasets

We employ the CIFAR-10C, CIFAR-100C, and
ImageNet-C datasets, for our experiments, as intro-
duced by [9]. Each dataset includes 15 distinct types
of image corruptions, referred to as tasks in a test-time
adaptation setting, applied to the test sets of CIFAR10,
CIFAR100 [11], and ImageNet [3]. These corruptions are
applied at 5 different severity levels, ranging from mild
to severe. For each task, CIFAR-10C and CIFAR-100C
contain 10,000 test samples, whereas ImageNet-C has 5000
samples.

The image corruptions are categorized into four pri-
mary groups: noise, blur, weather, and digital distortions.
Noise-based corruptions include Gaussian, Shot, and Im-
pulse noise, which introduce random pixel-level variations.
The blur category encompasses Defocus, Glass, Motion,
and Zoom blur effects, all of which simulate different types
of distorted imagery. Weather-related corruptions, such as
Snow, Frost, and Fog, replicate environmental conditions
that obscure image details. Lastly, digital distortions in-
clude effects like Brightness, Contrast, Elastic Transform,
Pixelate, and JPEG compression, which reflect various
forms of post-processing or compression artifacts that de-
grade image quality.

These corruption types, as proposed by [9], provide a
comprehensive framework for assessing model robustness,
which has been and is still being studied [10, 13, 14, 17, 21].
Their ability to emulate real-world image degradation sce-
narios is advantageous, allowing for a more realistic evalu-
ation of a model’s robustness. We provide corruption visu-
alizations, via an image example, in Figure 1. We urge the



readers to check out [9] for further inspection.

0.2. Implementation Details

In this section, we summarize the implementation details of
all the baseline methods that have been mentioned in the
main paper, including ours. We build our approach on the
standard benchmark code base 1 that also houses the hyper-
parameters and training details of all the prior TTA meth-
ods. CLIP-like models are used as provided by OpenCLIP.
Only the vision encoder is updated for existing online TTA
methods [15, 19, 24, 25] adopted for CLIP.

0.2.1. Experiments on CIFAR-10C, CIFAR-100C, and
ImageNet-C

BATCLIP (Ours): For domain-specific test adaptation, we
conducted experiments using ViT-B/16 and ViT-B/32 [5] as
the vision backbones. For CIFAR-10C, both the vision en-
coder (fvis) and text encoder (ftxt) were updated using the
AdamW optimizer with a learning rate of 10−3. Similarly,
for CIFAR-100C and ImageNet-C, we employed the Adam
optimizer and AdamW optimizer, respectively, with a learn-
ing rate of 5×10−4. The batch size B used was set to 200
for CIFAR-10C and CIFAR-100C, and 64 for ImageNet-C.
Throughout, the prompt template is fixed to “a photo of a
<CLS>.”.
TENT [24]: We follow all the hyperparameters that TENT
provides in their official implementation 2. To update the
vision encoder, we use Adam as the optimizer with a learn-
ing rate of 10−3 for CIFAR-10C and CIFAR-100C. For
ImageNet-C, we update using SGD with a learning rate of
25×10−5.
RoTTA [25]: For fairness, the batch sizes are set to 200
for the CIFAR datasets and 64 for ImageNet-C. The vision
encoder is updated based on the Adam rule with a learning
rate of 10−3. The capacity of the memory bank is set to 64,
for all the datasets. Following the notations in the paper, α
= 0.05, δ = 0.1, ν = 0.001, λt and λu = 1.0. We implement
the details exactly as described in their main paper.
RPL [19]: We use an Adam optimizer with a learning rate
of 10−3 for CIFAR-10C and CIFAR-100C. For ImageNet-
C, the update rule is SGD with a learning rate of 5×10−4.
To compute the generalized cross-entropy loss, q is set to
0.8 for all the datasets.
SAR [15]: The training details/hyperparameters for SAR
are the same as RPL [19] for CIFAR-10 and CIFAR-100.
For ImageNet-C, the learning rate is set to 25×10−5 with
an SGD update rule. The entropy threshold E0 is 0.4xln(C),
where C is the number of classes. ρ is set to a default of
0.05. The moving average factor is 0.9 for em and e0 is set
to 0.2. All parameters are the same as in [15].

1https://github.com/mariodoebler/test-time-adaptation/tree/main
2https://github.com/DequanWang/tent

TPT [20]: For each test image, 63 augmentations are gen-
erated based on random resized crops, yielding a batch
of 64 images, in addition to the original test image. The
prompt/context vectors are initialized based on “a photo of
a <CLS>.” and tokenized using pre-trained CLIP weights.
The confidence threshold is set to 10% i.e., the marginal en-
tropy over the 10% confident samples is minimized. For all
the datasets, we follow their core implementation and opti-
mize the prompt vectors using an AdamW optimizer with a
learning rate of 5×10−3.
VTE [4]: In VTE, an ensemble of different prompt tem-
plates is considered based on the idea of [18]. An example
of templates includes “a photo of a <CLS>.”, “a sketch of
a <CLS>.”, “a painting of a <CLS>.”, etc. The prompt
templates are then averaged. On the vision side, similar to
TPT [20], a batch of random augmentation is created for a
test image with no model updates.
WATT-P* and WATT-S* [16]: The two original variants
of WATT [16] were proposed with weight-averaging of
adapted weights from multiple prompt templates. Addi-
tionally, for each test batch, adaptation was performed over
multiple iterations. To fit our online TTA scheme, we re-
duced the number of iterations to a single step for each
prompt template and reset CLIP parameters only after a do-
main. However, this is still not fully online, as training is
performed on the test batch using 8 selected prompt tem-
plates: “a photo of a <CLS>”, “itap of a <CLS>”, “a
bad photo of the <CLS>”, “a origami <CLS>”, “a photo
of the large <CLS>”, “a <CLS> in a video game”, “art of
the <CLS>”, and “a photo of the small <CLS>”. As they
report performance on CIFAR-10C and CIFAR-100C only,
we follow their original implementation details. For experi-
ments using WATT-S*, we set a batch size of 200 (for a fair
comparison to other baselines) and a learning rate of 10−3

using an Adam optimizer. For WATT-P*, a learning rate of
10−4 is used with the same batch size.
StatA [26]: We adopt the original hyperparameter settings
of StatA for online TTA in our reported ImageNet experi-
ments and apply them to ImageNet-C. To control the effec-
tive number of correlated classes in a test batch, we set γ
to 0.1 (low correlation) and -1 (separate, sequential). The
default prompt template is “a photo of a <CLS>.”

0.2.2. Experiments on Domain Generalization Datasets
We evaluate BATCLIP on standard domain generalization
datasets [7]. For a fair comparison, as reported in WATT
[16], we use a batch size of 128 for all the online TTA ex-
periments on VLCS, PACS, and Office Home. We use an
AdamW optimizer for model updates using BATCLIP with
learning rates of 5×10−4, 10−3, and 5×10−3 for Office-
Home, PACS, and VLCS, respectively. We use the same
learning settings for TENT, WATT-S*, and WATT-P*, as in
WATT [16]. In addition to the mentioned datasets, we also
run experiments on the Terra Incognita dataset and optimize



Figure 2. Comparison of classification predictions across various methods (Zero-shot CLIP (ViT-B/16), VTE [4], TPT [20], and Ours)
on ImageNet-C samples with Gaussian noise. Each row illustrates an example, displaying the ground truth (GT) label alongside the
predictions from each method. Correct predictions are highlighted in green, while incorrect ones are marked in red. Our approach
demonstrates enhanced robustness and higher accuracy, especially in challenging image corruption conditions.

Figure 3. Task-wise mean accuracy (%) of zero-shot CLIP across
different corruption severity levels. [Top]: ViT-B/32 backbone.
[Bottom]: ViT-L/14 backbone. The dashed lines indicate the per-
formance of zero-shot CLIP (w/ respective visual backbones) on
the corresponding source datasets.

using an AdamW optimizer with a learning rate of 5×10−4

and a batch size of 256.

0.3. Additional Results

In the following subsections, we provide additional results
and discussions.

0.3.1. Zero-shot performance analysis of ViT-B/32 and
ViT-L/14

In the main paper, we analyze and evaluate the zero-shot
performance of ResNet-101 (RN101) [8] and ViT-B/16 [5]
and conclude that such CLIP backbones are extremely sen-
sitive, in terms of classification accuracy, to increasing
severity levels of image corruption. This could be a ma-
jor concern in situations involving real-time deployment of
CLIP. Here, we present a similar analysis in Figure 3, using
ViT-B/32 and ViT-L/14 as backbones. Our analysis, from
the main paper, carries forward. To summarise, irrespec-
tive of the CLIP visual backbone, the robustness towards
image corruption is limited. The classification performance
degrades with an increase in the severity of corruption in an
image.

0.3.2. Online TTA results using a ViT-B/32 backbone

In the main paper, we had presented the online TTA re-
sults on CIFAR-10C, CIFAR-100C, and ImageNet-C, us-
ing a ViT-B/16 backbone. In Table 1, we provide results
using a ViT-B/32 backbone. Across all the datasets, we
see that BATCLIP achieves the best or comparable perfor-
mance against all the baseline approaches.
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ZS ICLR’21 35.47 39.94 43.23 69.95 41.43 64.50 70.13 70.85 72.33 66.66 81.37 64.57 59.69 48.28 56.62 59.00
TENT ICLR’21 20.09 23.45 34.47 69.85 23.01 39.79 60.35 76.83 77.49 76.07 88.88 81.38 65.35 57.01 51.19 56.35
RoTTA CVPR’23 36.55 40.91 43.99 70.03 42.45 64.52 70.08 71.23 72.68 67.31 81.92 64.99 60.33 49.40 57.11 59.57

RPL arXiv 15.89 19.08 34.04 77.84 18.72 41.22 62.39 78.17 78.86 76.31 88.83 81.15 68.98 54.19 51.91 56.51
SAR ICML’22 50.28 54.12 49.65 73.08 51.98 71.17 74.65 73.73 75.22 70.99 84.25 72.08 63.93 51.57 60.32 65.13
TPT NeurIPS’22 43.11 46.53 48.29 71.31 47.80 66.89 71.96 74.00 76.00 68.81 84.12 66.35 63.86 51.86 58.01 62.59
VTE ECCV-W’24 47.59 50.18 53.15 71.39 53.86 67.92 72.90 76.37 76.30 70.78 83.27 61.07 69.00 58.57 61.14 64.90

WATT-P* NeurIPS’24 43.64 47.1 45.97 74.98 48.04 70.42 74.74 76.1 76.86 71.85 85.15 70.36 64.6 56.0 60.37 64.41
WATT-S* NeurIPS’24 56.38 58.08 52.48 78.07 58.29 76.42 79.16 78.9 79.71 76.76 87.19 76.49 70.35 64.11 65.05 70.49

Ours 52.39 55.99 52.54 76.79 54.04 74.90 75.79 77.67 79.10 75.31 86.33 77.34 67.41 57.06 61.29 68.26
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ZS ICLR’21 16.23 17.83 17.57 39.07 17.63 38.55 43.81 42.32 43.46 39.71 50.32 29.34 28.74 22.85 29.42 31.79
TENT ICLR’21 5.53 7.64 6.85 49.60 4.47 48.45 52.35 49.77 26.77 37.50 63.05 50.53 13.89 27.00 30.80 31.61
RoTTA CVPR’23 16.63 18.25 17.78 38.62 17.76 38.38 43.52 42.39 43.41 39.37 50.60 28.85 28.89 23.50 29.65 31.84

RPL arXiv 4.50 5.80 9.61 50.26 4.43 48.88 52.61 50.27 22.36 25.34 63.36 50.31 9.10 18.65 34.53 30.00
SAR ICML’22 24.63 27.14 21.25 44.57 22.98 43.95 48.40 48.01 47.76 44.85 57.76 42.11 32.69 28.02 33.08 37.81
TPT NeurIPS’22 16.08 17.65 17.54 39.21 19.47 38.91 44.01 43.45 44.46 40.15 50.93 27.77 30.91 23.36 29.55 32.23
VTE ECCV-W’24 16.84 18.33 18.94 39.63 22.88 39.13 43.80 44.56 44.88 39.21 49.37 28.37 34.13 26.87 30.12 33.14

WATT-P* NeurIPS’24 15.55 17.02 16.16 40.25 16.16 38.74 43.6 42.49 43.51 39.39 51.17 31.85 28.35 23.94 29.74 31.86
WATT-S* NeurIPS’24 16.22 17.72 16.85 41.54 17.04 39.66 44.55 43.33 44.26 40.26 52.13 33.13 29.34 24.65 30.39 32.73

Ours 21.35 24.71 22.32 46.26 23.07 44.64 50.12 47.23 46.88 44.92 58.55 38.52 34.56 27.73 33.19 37.60
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ZS ICLR’21 12.88 13.04 12.90 24.42 11.86 22.72 20.20 25.70 25.84 30.28 50.54 17.32 18.96 32.20 29.12 23.20
TENT ICLR’21 9.18 8.50 10.42 26.02 15.72 26.06 21.64 27.12 26.18 31.60 50.58 22.28 20.12 34.06 31.30 24.05
RoTTA CVPR’23 13.10 13.30 13.02 24.48 11.96 22.86 20.28 26.06 26.06 30.24 50.46 17.34 19.16 32.44 29.18 23.33

RPL arXiv 11.68 10.98 12.10 25.68 13.24 23.98 20.84 26.32 26.12 30.86 50.62 19.30 19.48 33.14 29.92 23.62
SAR ICML’22 19.82 20.36 20.92 25.78 20.40 28.34 23.10 28.12 28.38 34.74 51.10 24.60 24.38 36.54 34.40 28.07
TPT NeurIPS’22 12.04 12.64 12.52 25.38 12.28 22.68 20.78 26.36 26.64 30.78 51.02 16.50 19.90 33.62 30.62 23.58
VTE ECCV-W’24 11.96 12.32 13.44 25.06 11.70 22.58 22.40 27.38 27.02 32.28 51.52 16.84 19.94 34.80 32.82 24.14

StatA (γ=0.1) CVPR’25 11.57 12.28 11.74 21.91 10.91 20.43 18.87 24.04 25.0 29.12 49.21 16.02 18.87 29.15 26.72 21.73
StatA (γ=-1) CVPR’25 12.52 13.10 12.74 22.43 11.39 21.17 19.61 24.37 25.60 29.44 49.89 17.71 19.21 29.87 27.52 22.44

Ours 16.84 18.20 16.10 25.04 20.90 28.90 25.24 29.42 27.18 36.02 50.18 17.66 27.68 36.20 35.42 27.39

Table 1. Mean accuracy (%) on CIFAR-10C, CIFAR-100C, and ImageNet-C - TTA mean accuracy of the 15 corruptions (tasks) at a
severity level of 5, using ViT-B/32.

0.3.3. Detailed results from the loss ablation study
In the main paper, we provide ablation of loss components
and their combinations i.e., the mean accuracy across all the
tasks for ViT-B/16 on the benchmark corruption datasets.
Here, we provide additional task-wise accuracy in Table 2.
The addition of loss components Lpm and Lsp help CLIP in
adapting its feature space to a specific domain/corruption.

0.3.4. Effect of different prompt templates
In Table , we show results with “relevant” prompt templates
to show the independence of such prompt selection, at test-
time. As seen, the performance gain over zero-shot ViT-
B/32 is fairly large for all the prompt templates. Though
TPT [20] fine-tunes a pre-trained prompt on each image,
and VTE [4] uses an ensemble of prompts, our method is
agnostic to the prompt template being used, making it fa-
vorable for real-time usage.

In all of our prior experiments, we use a generic prompt
template “a photo of a <CLS>.” for all of the datasets
and methods. Here, we replace this with “relevant” prompt
templates to show the independence of such a prompt selec-
tion, at test-time, and report the results in Table 5. As seen,
the performance gain over zero-shot ViT-B/32 is fairly large
for all the prompt templates. Though TPT [20] fine-tunes a
pre-trained prompt on each test image, and VTE [4] uses an

ensemble of prompts, our method is agnostic to the prompt
template being used, making it favorable for real-time de-
ployment.
0.3.5. Impact of bimodal adaptation
To show the effectiveness of bimodal adaptation, we ablate
Lpm, which is responsible for updating the text encoder
ftxt. We report the results in Table 6. We see a drop in
accuracy when ftxt is “frozen” i.e., when Lpm isn’t used,
necessitating the need for bimodal adaptation of CLIP en-
coders.

0.3.6. BATCLIP for other vision-language models
We employ SigLIP [27], a recent pre-trained vision-
language model with 877 million parameters, for our online
TTA experiments on ImageNet-C. We use a batch size of 8
and a learning rate of 5× 10−5 with the AdamW optimizer.
Despite the small batch size, which could impact proto-
types, BATCLIP achieves better performance, as shown in
Table 8.

0.3.7. Results on distribution shifts caused by lighting
conditions, camera types, or object scales

To evaluate BATCLIP across a wide spectrum of shifts,
we extend our setup to datasets exhibiting variations due
to lighting conditions, camera types, and object scales. We
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Lpm 41.82 45.66 52.88 70.13 39.29 66.61 71.27 71.49 74.71 69.20 80.98 72.89 55.58 55.55 50.44 61.23
Lsp 62.47 65.43 63.41 79.96 52.73 80.02 81.38 82.35 83.44 80.46 88.85 81.22 67.77 60.52 67.74 73.16

Lent+Lpm 16.58 19.89 42.69 79.45 23.41 77.03 80.95 81.74 78.45 80.66 90.52 82.55 62.56 64.35 58.16 62.60
Lent + 0.1 *(Lpm + Lsp) 44.92 51.41 63.30 80.65 50.79 79.83 83.13 83.59 83.89 81.91 89.56 83.16 67.78 66.69 67.87 71.90
Lent + 0.5 *(Lpm + Lsp) 58.81 63.85 65.99 80.26 53.90 80.30 82.30 83.08 84.04 81.66 89.19 82.67 68.29 62.70 68.52 73.70

Lent+Lpm+Lsp 61.13 64.09 65.76 80.51 54.96 80.65 81.94 83.04 84.19 80.84 88.95 82.15 69.16 62.68 67.64 73.85
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ViT-B/16

Lent 7.71 10.05 11.52 49.42 12.49 49.36 53.79 54.11 50.76 49.92 64.32 47.07 33.40 38.63 39.95 38.17
Lpm 19.88 24.06 21.26 45.57 22.66 43.66 49.37 46.05 45.96 43.69 57.76 37.33 33.66 25.85 32.65 36.63
Lsp 24.69 27.28 33.62 49.08 25.29 47.84 53.86 51.70 50.93 46.93 62.57 44.76 33.88 31.89 36.05 41.36

Lent+Lpm 12.26 12.62 13.14 48.90 26.22 48.99 53.10 53.10 52.43 49.44 63.36 46.78 33.27 37.77 38.36 39.32
Lent + 0.1 *(Lpm + Lsp) 24.99 27.10 32.95 49.92 25.91 48.42 54.43 52.87 51.57 47.70 63.68 45.25 39.74 31.58 37.16 41.88
Lent + 0.5 *(Lpm + Lsp) 25.24 27.59 33.41 50.05 25.73 48.55 54.44 52.85 51.80 47.81 63.75 45.08 34.63 31.67 37.17 41.98

Lent+Lpm+Lsp 24.91 27.73 33.66 50.11 26.27 48.49 54.85 52.35 51.62 48.38 63.27 45.21 34.74 32.38 37.31 42.09
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ViT-B/16

Lent 0.90 1.06 1.16 29.12 13.02 32.14 27.34 35.32 11.14 40.92 56.90 23.78 7.78 39.62 40.22 24.03
Lpm 10.20 11.40 10.74 19.56 15.18 20.06 19.28 27.66 29.72 34.10 53.50 22.66 13.80 24.38 30.26 22.83
Lsp 19.32 20.98 19.26 25.90 21.22 30.06 28.56 35.22 31.34 40.36 55.20 25.64 23.68 36.90 37.18 30.05

Lent+Lpm 0.90 1.16 1.30 28.90 17.04 31.56 26.24 36.26 12.22 42.12 57.92 30.34 10.36 40.66 41.20 25.21
Lent + 0.1 *(Lpm + Lsp) 19.48 21.14 19.16 26.80 20.70 29.80 29.32 35.92 30.68 41.04 55.80 25.66 22.50 37.68 37.92 30.25
Lent + 0.5 *(Lpm + Lsp) 19.56 21.38 19.16 26.96 21.26 30.06 29.24 35.92 31.26 41.34 56.32 25.74 22.58 37.94 37.92 30.44

Lent+Lpm+Lsp 19.32 21.38 19.60 26.58 21.94 30.88 29.02 36.48 32.00 40.98 56.72 26.14 23.74 37.68 38.34 30.72

Table 2. Task-wise loss ablation results (accuracy) on CIFAR-10C, CIFAR-100C, and ImageNet-C.
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Table 3. Zero-shot performance on CIFAR10 (source) after adaptation of BATCLIP on a task.
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Table 4. Zero-shot performance on CIFAR100 (source) after adaptation of BATCLIP on a task.

conduct experiments on ImageNet-ES [1], which introduces
significant variations in lighting and camera sensor settings
(e.g., ISO, shutter speed). While more details can be found
in the original work, but ImageNet-ES introduces wide
variations in lighting conditions and camera sensor factors
(ISO, shutter speed, etc.). We report the results in Table
7 using a ViT-B/16 backbone. To be noted that, “Auto-
Exposure” has 5 tasks for each condition, while “Manual”

has 27. On average, BATCLIP outperforms all the reported
baselines.

0.3.8. Post-adaptation results on source test sets
Thanks to the natural language supervision and also due
to the pre-training on large amounts of (image, text) pairs,
CLIP has shown strong generalization capabilities. How-
ever, for an efficient adaptation to a downstream task, fine-



Prompt Template CIFAR-10C CIFAR-100C ImageNet-C

“a low contrast photo of a <CLS>.” 68.53 (+7.81) 37.09 (+4.97) 27.31 (+3.71)
“a blurry photo of a <CLS>.” 68.84 (+10.96) 36.80 (+5.33) 26.92 (+3.52)

“a photo of a big <CLS>.” 67.49 (+10.10) 35.79 (+4.87) 25.64 (+3.29)

Table 5. Prompt template selection. + denotes the accuracy gain
over zero-shot ViT-B/32.

Dataset fvis update ftxt update Ours

CIFAR-10C ✔ ✗ 72.58
✔ ✔ 73.85

CIFAR-100C ✔ ✗ 41.00
✔ ✔ 42.09

ImageNet-C ✔ ✗ 29.88
✔ ✔ 30.72

Table 6. Ablation on Lpm to demonstrate the need of bimodal
adaptation of CLIP encoders - using a ViT-B/16 backbone.

Camera Sensor Condition ZS TENT SAR Ours

Auto-Exposure Light on 50.90 51.62 52.60 53.82
Light off 46.96 47.44 47.88 49.32

Manual Light on 60.44 60.64 60.30 61.26
Light off 60.76 60.99 59.62 61.61

Table 7. Online TTA experiments on ImageNet-ES [1]. Mean
accuracy (in %).

SigLIP Clean (ImageNet) Source TENT SAR BATCLIP

ImageNet-C 82.00 35.44 37.58 39.62 40.10

Table 8. Online TTA experiments on ImageNet-C with SigLIP
[27].

tuning the full model is infeasible due to large model up-
dates. The primary reason is the loss of useful pre-trained
knowledge of CLIP, which could eventually lead to over-
fitting to a downstream task. However, for attention-based
models, tuned for multimodal tasks, [28] show that tuning
the LayerNorm parameters leads to strong results. Inspired
by [28], in our bimodal test-adaptation scheme, we update
the LayerNorm parameters of both CLIP encoders, to a spe-
cific corruption task, which makes it parametric-efficient.
We perform a single-domain TTA or adapt CLIP, at test-
time, to a single domain only and then reset the parameters.
Now, with continual adaptation to a certain corruption task,
it gets difficult to preserve CLIP’s pre-trained knowledge
since the normalization parameters begin to overfit to this
domain. Then, a natural question arises -

Given that CLIP has been adapted to a specific corruption
task, will the zero-shot generalization still hold back on its

source test set?

In this crucial experiment, we challenge our BATCLIP, and
evaluate its zero-shot generalization performance back on
the source test set, to check the preservation of pre-trained

CLIP knowledge. After the adaptation of CLIP on each cor-
ruption task, we report the adapted model’s zero-shot per-
formance on its corresponding source test set. We report
results for CIFAR-10C and CIFAR-100C in Tables 3 and 4,
using ViT-B/16 and ViT-B/32 backbones. For all of the re-
sults, we use the prompt template “a photo of a <CLS>.”.
As an example, for CIFAR-10C, upon adaptation of CLIP
to Gaussian noise following our approach, we report the
adapted model’s zero-shot accuracy on its source test set -
CIFAR10 test set.

From Table 3, we observe that, on average, there is a
2.91% drop in accuracy compared to a zero-shot evaluation
using pre-trained CLIP ViT-B/16. Similarly, for ViT-B/32,
we see a drop of about 7.53% in mean accuracy. In Table
4, for CIFAR-100C using a ViT-B/16 backbone, we see an
improvement of 0.76% in mean accuracy.

On the whole, we conclude that since the adaptation for
a task happens over multiple test batches, the zero-shot per-
formance back on the source data largely depends on the
distribution of the image corruption. Overall, ViT-B/16 vi-
sual backbones preserve larger amounts of CLIP pre-trained
knowledge. This proves the effectiveness of our method
BATCLIP, on average.

0.3.9. t-SNE visualizations of CIFAR-10C and CIFAR-
100C

In this section, we provide illustrations of task-wise t-SNE
[22] plots for CIFAR-10C and CIFAR-100C and compare
them against zero-shot ViT-B/16. The results are in Fig-
ures 4, 5, 6, and 7. Across all corruptions/tasks, BATCLIP
learns strong discriminative visual features with a strong
image-text alignment and class-level separation. ImageNet-
C has 1000 classes, so, we do not provide t-SNE plots
to avoid complications. However, the analysis and results
carry forward.

Gaussian Shot Impulse Defocus Glass

Motion Zoom Snow Frost Fog

Brightness Contrast Elastic Pixelate JPEG

Figure 4. BATCLIP (w/ ViT-B/16): The t-SNE plots show visual
(◦) and text (⋆) features for CIFAR-10C.



Gaussian Shot Impulse Defocus Glass

Motion Zoom Snow Frost Fog

Brightness Contrast Elastic Pixelate JPEG

Figure 5. Zero-shot ViT-B/16: The t-SNE plots show visual (◦)
and text (⋆) features for CIFAR-10C.

Gaussian Shot Impulse Defocus Glass

Motion Zoom Snow Frost Fog

Brightness Contrast Elastic Pixelate JPEG

Figure 6. BATCLIP (w/ ViT-B/16): The t-SNE plots show visual
(◦) and text (⋆) features for CIFAR-100C.

Gaussian Shot Impulse Defocus Glass

Motion Zoom Snow Frost Fog

Brightness Contrast Elastic Pixelate JPEG

Figure 7. Zero-shot ViT-B/16: The t-SNE plots show visual (◦)
and text (⋆) features for CIFAR-100C.
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