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Supplementary Material

A. Backpropagation
We use an adjoint rendering approach, starting from the last
state of each ray, which we store, and reconstruct each ray
state backwards using p−1(x, i). We can then use this re-
constructed state to backpropagate the error to each state,
then propagate this error to each primitive. The gradient
with respect to mean, scale, and orientation, all come from
the derivative of the ray-ellipsoid intersection function. To
retrieve the list of primitives intersected, we store the list
of intersections on the forward pass. Since rays tend to ter-
minate before 300 total intersections, this turns out to be
relatively cheap, at 1.2 KB per a ray. Although we experi-
mented with using ray tracing to retrieve the list of surfaces
in reverse order, we found the instability too high.

B. Hyperparameters, Etc
We change the opacity learning rate to 0.0125, the initial
position learning rate to 4 × 10−5 and the final position
learning rate to 4× 10−7. We change the parameter known
as “percent dense” in 3DGS to 0.001785, which controls
the size threshold above which primitives are split instead
of cloned. We perform this every 200 iterations, instead of
100, and set the splitting gradient threshold to 2.5 × 10−7

and the clone gradient threshold to 0.1. We also stop split-
ting and cloning at 7 million primitives, or at 16000 itera-
tions, which ever comes first, and start at 1500 iterations.

For color, we apply a softplus activation (β = 10) to
the output of the spherical harmonics (instead of 3DGS’s
relu activation), which we find avoids certain local minima
where primitives get locked into a color. We increase the
spherical harmonic degree every 2,000 iterations, instead of
1,000. We set the max primitive size to 25 units, which
improves performance.

B.1. Inverse Contraction Initialization

To help initialize the primitives in a scene, we supplement
the SfM initialization with 10,000 additional primitives.
We generate these primitives by sampling their means uni-
formly from a radius-2 sphere. The radius is set to a con-
stant value based the max radius at which the spheres could
be packed into the radius-2 sphere, and colors are set to a
constant value of 0.5. These primitives are then transformed
by “uncontracting” the resulting means and covariances us-
ing the inverse of the contraction used in mip-NeRF 360 [3].
We found that highly anisotropic primitives at initialization
can cause issues, so we scale the primitives to be isotropic.

To review, the mip-NeRF 360 contraction function C that
maps from a 3D coordinate in Euclidean space x to a 3D

coordinate in contracted space z is:

C(x) = x ·
2
√
max(1, ||x||2)− 1

max(1, ||x||2)
(8)

The inverse of C(x) can be defined straightforwardly:

C−1(z) =
z√

max(1, ||z||2)(2−min(2,
√
max(1, ||z||2)))

(9)
To apply this inverse contraction to a Gaussian instead of
a point, we use the same Kalman-esque approach as was
used in mip-NeRF 360: we linearize the contraction around
z into a Jacobian-vector product, which we apply twice to
the input covariance matrix.
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Figure 8. Additional visual comparison of our method on the Mip-NeRF 360 dataset [4].



PSNR ↑ berlin nyc alameda london Average
3DGS 26.83 26.90 24.14 25.48 25.84
Mip Splatting 27.30 27.52 24.76 26.28 26.46
StopThePop 26.81 27.14 24.12 25.61 25.92
SMERF 28.52 28.21 25.35 27.05 27.28
Ours 27.24 27.93 24.72 26.49 26.60
Zip-NeRF 28.59 28.42 25.41 27.06 27.37
SSIM ↑ berlin nyc alameda london Average
3DGS .899 .861 .776 .830 .842
Mip Splatting .892 .853 .768 .822 .834
StopThePop .885 .844 .748 .801 .819
SMERF .887 .844 .758 .829 .830
Ours .900 .863 .779 .837 .845
Zip-NeRF .891 .850 .767 .835 .836
LPIPS ↓ berlin nyc alameda london Average
3DGS .406 .380 .441 .446 .418
Mip Splatting .392 .356 .410 .411 .392
StopThePop .402 .373 .433 .438 .411
SMERF .391 .361 .416 .390 .389
Ours .371 .337 .389 .374 .368
Zip-NeRF .378 .331 .387 .360 .364

Table 4. Full results for Zip-NeRF dataset
PSNR ↑ bicycle flowers garden stump treehill room counter kitchen bonsai
3DGS 25.24 21.55 27.38 26.56 22.43 31.53 29.00 31.45 32.21
StopThePop 25.23 21.62 27.33 26.65 22.44 30.91 28.79 31.13 31.85
3DGRT 25.13 21.58 26.99 26.57 22.40 30.92 28.78 30.60 31.85
SMERF 25.58 22.24 27.66 27.19 23.93 31.38 29.02 31.68 33.19
Our model 25.34 21.70 27.46 26.41 22.74 31.39 28.91 31.36 32.24
ZipNeRF 25.80 22.40 28.20 27.55 23.89 32.65 29.38 32.50 34.46
SSIM ↑ bicycle flowers garden stump treehill room counter kitchen bonsai
3DGS .766 .606 .866 .771 .633 .919 .909 .928 .942
StopThePop .768 .607 .866 .775 .635 .919 .907 .927 .941
3DGRT .770 .624 .858 .779 .636 .917 .908 .924 .942
SMERF .760 .626 .844 .784 .682 .918 .892 .916 .941
Our model .776 .639 .869 .781 .656 .922 .910 .926 .943
ZipNeRF .769 .642 .860 .800 .681 .925 .902 .928 .949
LPIPS ↓ bicycle flowers garden stump treehill room counter kitchen bonsai
3DGS .240 .367 .123 .251 .376 .287 .258 .155 .252
StopThePop .233 .362 .120 .244 .366 .281 .253 .154 .249
3DGRT .226 .335 .134 .243 .364 .280 .248 .156 .242
SMERF .239 .317 .147 .243 .302 .259 .256 .155 .222
Our model .220 .307 .120 .230 .318 .275 .240 .155 .236
ZipNeRF .228 .309 .127 .236 .281 .238 .223 .134 .196

Table 5. Full results for Mip-NeRF 360 dataset
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