EVER: Exact Volumetric Ellipsoid Rendering for Real-time View Synthesis

Supplementary Material

A. Backpropagation

We use an adjoint rendering approach, starting from the last
state of each ray, which we store, and reconstruct each ray
state backwards using p~!(x,4). We can then use this re-
constructed state to backpropagate the error to each state,
then propagate this error to each primitive. The gradient
with respect to mean, scale, and orientation, all come from
the derivative of the ray-ellipsoid intersection function. To
retrieve the list of primitives intersected, we store the list
of intersections on the forward pass. Since rays tend to ter-
minate before 300 total intersections, this turns out to be
relatively cheap, at 1.2 KB per a ray. Although we experi-
mented with using ray tracing to retrieve the list of surfaces
in reverse order, we found the instability too high.

B. Hyperparameters, Etc

We change the opacity learning rate to 0.0125, the initial
position learning rate to 4 x 10~° and the final position
learning rate to 4 x 10~7. We change the parameter known
as “percent dense” in 3DGS to 0.001785, which controls
the size threshold above which primitives are split instead
of cloned. We perform this every 200 iterations, instead of
100, and set the splitting gradient threshold to 2.5 x 10~7
and the clone gradient threshold to 0.1. We also stop split-
ting and cloning at 7 million primitives, or at 16000 itera-
tions, which ever comes first, and start at 1500 iterations.

For color, we apply a softplus activation (8 = 10) to
the output of the spherical harmonics (instead of 3DGS’s
relu activation), which we find avoids certain local minima
where primitives get locked into a color. We increase the
spherical harmonic degree every 2,000 iterations, instead of
1,000. We set the max primitive size to 25 units, which
improves performance.

B.1. Inverse Contraction Initialization

To help initialize the primitives in a scene, we supplement
the SfM initialization with 10,000 additional primitives.
We generate these primitives by sampling their means uni-
formly from a radius-2 sphere. The radius is set to a con-
stant value based the max radius at which the spheres could
be packed into the radius-2 sphere, and colors are set to a
constant value of 0.5. These primitives are then transformed
by “uncontracting” the resulting means and covariances us-
ing the inverse of the contraction used in mip-NeRF 360 [3].
We found that highly anisotropic primitives at initialization
can cause issues, so we scale the primitives to be isotropic.

To review, the mip-NeRF 360 contraction function C that
maps from a 3D coordinate in Euclidean space x to a 3D

coordinate in contracted space z is:

2y/max(1,|x|?) = 1
max(1, |[x][?)

C(x)=x (®)

The inverse of C(x) can be defined straightforwardly:

v/max(1,]|z][?)(2 — min(2, y/max(1, |\z||2)()9))

To apply this inverse contraction to a Gaussian instead of
a point, we use the same Kalman-esque approach as was
used in mip-NeRF 360: we linearize the contraction around
z into a Jacobian-vector product, which we apply twice to
the input covariance matrix.

C Y (z) =
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Figure 8. Additional visual comparison of our method on the Mip-NeRF 360 dataset [4].



PSNR 1 berlin nyc alameda london Average

3DGS 26.83 26.90 24.14 2548 25.84

Mip Splatting | 27.30 27.52 2476  26.28 26.46

StopThePop 26.81 27.14 2412 25.61 25.92

SMERF 28.52 28.21 2535  27.05 27.28

Ours 2724 2793 2472 2649 26.60

Zip-NeRF 28.59 28.42 2541  27.06 27.37

SSIM + berlin nyc alameda london Average

3DGS 899 861 776 .830 .842

Mip Splatting 892 .853 768 .822 .834

StopThePop 885 844 748 .801 .819

SMERF 887  .844 758 .829 .830

Ours 900  .863 779 .837 .845

Zip-NeRF .891 .850 767 .835 .836

LPIPS | berlin nyc alameda london Average

3DGS 406 380 441 446 418

Mip Splatting 392 356 410 411 392

StopThePop 402 373 433 438 411

SMERF 391 361 416 390 .389

Ours 371 337 .389 374 .368

Zip-NeRF 378 331 387 .360 364

Table 4. Full results for Zip-NeRF dataset

PSNR 1 bicycle flowers garden stump treehill | room counter kitchen bonsai
3DGS 25.24 21.55 2738 2656 2243 | 31.53 29.00 3145 3221
StopThePop 25.23 21.62 2733  26.65 2244 | 3091 28.79 31.13  31.85
3DGRT 25.13 21.58 2699 2657 2240 | 30.92 28.78 30.60 31.85
SMERF 25.58 2224 27.66 27.19 2393 | 31.38 29.02 31.68 33.19
Our model 25.34 21.70  27.46 26.41 22.74 | 31.39 28.91 31.36  32.24
ZipNeRF 25.80 2240 2820 27.55  23.89 | 32.65 29.38 32.50  34.46
SSIM 1 bicycle flowers garden stump treehill | room counter kitchen bonsai
3DGS 766 .606 .866 71 633 | 919 .909 928 942
StopThePop 7168 .607 .866 775 635 | 919 907 927 941
3DGRT 770 .624 .858 779 .636 | 917 908 924 942
SMERF .760 .626 .844 784 .682 | 918 .892 916 941
Our model 776 .639 .869 781 656 | 922 910 926 .943
ZipNeRF 769 .642 .860 .800 .681 925 .902 928 .949
LPIPS | bicycle flowers garden stump treehill | room counter kitchen bonsai
3DGS 240 367 123 251 376 | 287 258 155 252
StopThePop 233 362 120 244 366 | 281 253 154 .249
3DGRT 226 335 134 .243 364 | 280 .248 156 242
SMERF .239 317 147 243 302 | .259 .256 155 222
Our model .220 .307 120 .230 318 | 275 .240 155 .236
ZipNeRF 228 .309 127 236 281 238 223 134 .196

Table 5. Full results for Mip-NeRF 360 dataset
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